-
Notifications
You must be signed in to change notification settings - Fork 101
/
Copy pathdata_loader.py
executable file
·149 lines (123 loc) · 5.2 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
from __future__ import print_function
import torch.utils.data as data
from PIL import Image
import os
import sys
import pickle
import numpy as np
import lmdb
import torch
def default_loader(path):
try:
im = Image.open(path).convert('RGB')
return im
except:
print(..., file=sys.stderr)
return Image.new('RGB', (224, 224), 'white')
class ImagerLoader(data.Dataset):
def __init__(self, img_path, transform=None, target_transform=None,
loader=default_loader, square=False, data_path=None, partition=None, sem_reg=None):
if data_path == None:
raise Exception('No data path specified.')
if partition is None:
raise Exception('Unknown partition type %s.' % partition)
else:
self.partition = partition
self.env = lmdb.open(os.path.join(data_path, partition + '_lmdb'), max_readers=1, readonly=True, lock=False,
readahead=False, meminit=False)
with open(os.path.join(data_path, partition + '_keys.pkl'), 'rb') as f:
self.ids = pickle.load(f)
self.square = square
self.imgPath = img_path
self.mismtch = 0.8
self.maxInst = 20
if sem_reg is not None:
self.semantic_reg = sem_reg
else:
self.semantic_reg = False
self.transform = transform
self.target_transform = target_transform
self.loader = loader
def __getitem__(self, index):
recipId = self.ids[index]
# we force 80 percent of them to be a mismatch
if self.partition == 'train':
match = np.random.uniform() > self.mismtch
elif self.partition == 'val' or self.partition == 'test':
match = True
else:
raise 'Partition name not well defined'
target = match and 1 or -1
with self.env.begin(write=False) as txn:
serialized_sample = txn.get(self.ids[index].encode('latin1'))
sample = pickle.loads(serialized_sample,encoding='latin1')
imgs = sample['imgs']
# image
if target == 1:
if self.partition == 'train':
# We do only use the first five images per recipe during training
imgIdx = np.random.choice(range(min(5, len(imgs))))
else:
imgIdx = 0
loader_path = [imgs[imgIdx]['id'][i] for i in range(4)]
loader_path = os.path.join(*loader_path)
# path = os.path.join(self.imgPath, self.partition, loader_path, imgs[imgIdx]['id'])
path = os.path.join(self.imgPath, loader_path, imgs[imgIdx]['id'])
else:
# we randomly pick one non-matching image
all_idx = range(len(self.ids))
rndindex = np.random.choice(all_idx)
while rndindex == index:
rndindex = np.random.choice(all_idx) # pick a random index
with self.env.begin(write=False) as txn:
serialized_sample = txn.get(self.ids[rndindex].encode('latin1'))
rndsample = pickle.loads(serialized_sample,encoding='latin1')
rndimgs = rndsample['imgs']
if self.partition == 'train': # if training we pick a random image
# We do only use the first five images per recipe during training
imgIdx = np.random.choice(range(min(5, len(rndimgs))))
else:
imgIdx = 0
loader_path = [rndimgs[imgIdx]['id'][i] for i in range(4)]
loader_path = os.path.join(*loader_path)
path = os.path.join(self.imgPath, loader_path, rndimgs[imgIdx]['id'])
# path = self.imgPath + rndimgs[imgIdx]['id']
# instructions
instrs = sample['intrs']
itr_ln = len(instrs)
t_inst = np.zeros((self.maxInst, np.shape(instrs)[1]), dtype=np.float32)
t_inst[:itr_ln][:] = instrs
instrs = torch.FloatTensor(t_inst)
# ingredients
ingrs = sample['ingrs'].astype(int)
ingrs = torch.LongTensor(ingrs)
igr_ln = max(np.nonzero(sample['ingrs'])[0]) + 1
# load image
img = self.loader(path)
if self.square:
img = img.resize(self.square)
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
rec_class = sample['classes'] - 1
rec_id = self.ids[index]
if target == -1:
img_class = rndsample['classes'] - 1
img_id = self.ids[rndindex]
else:
img_class = sample['classes'] - 1
img_id = self.ids[index]
# output
if self.partition == 'train':
if self.semantic_reg:
return [img, instrs, itr_ln, ingrs, igr_ln], [target, img_class, rec_class]
else:
return [img, instrs, itr_ln, ingrs, igr_ln], [target]
else:
if self.semantic_reg:
return [img, instrs, itr_ln, ingrs, igr_ln], [target, img_class, rec_class, img_id, rec_id]
else:
return [img, instrs, itr_ln, ingrs, igr_ln], [target, img_id, rec_id]
def __len__(self):
return len(self.ids)