-
Notifications
You must be signed in to change notification settings - Fork 101
/
Copy pathtrain.py
executable file
·379 lines (311 loc) · 13 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
import os
import time
import random
import numpy as np
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision.models as models
import torch.backends.cudnn as cudnn
from data_loader import ImagerLoader
from args import get_parser
from trijoint import im2recipe
# =============================================================================
parser = get_parser()
opts = parser.parse_args()
# =============================================================================
if not(torch.cuda.device_count()):
device = torch.device(*('cpu',0))
else:
torch.cuda.manual_seed(opts.seed)
device = torch.device(*('cuda',0))
def main():
model = im2recipe()
model.visionMLP = torch.nn.DataParallel(model.visionMLP)
model.to(device)
# define loss function (criterion) and optimizer
# cosine similarity between embeddings -> input1, input2, target
cosine_crit = nn.CosineEmbeddingLoss(0.1).to(device)
if opts.semantic_reg:
weights_class = torch.Tensor(opts.numClasses).fill_(1)
weights_class[0] = 0 # the background class is set to 0, i.e. ignore
# CrossEntropyLoss combines LogSoftMax and NLLLoss in one single class
class_crit = nn.CrossEntropyLoss(weight=weights_class).to(device)
# we will use two different criteria
criterion = [cosine_crit, class_crit]
else:
criterion = cosine_crit
# # creating different parameter groups
vision_params = list(map(id, model.visionMLP.parameters()))
base_params = filter(lambda p: id(p) not in vision_params, model.parameters())
# optimizer - with lr initialized accordingly
optimizer = torch.optim.Adam([
{'params': base_params},
{'params': model.visionMLP.parameters(), 'lr': opts.lr*opts.freeVision }
], lr=opts.lr*opts.freeRecipe)
if opts.resume:
if os.path.isfile(opts.resume):
print("=> loading checkpoint '{}'".format(opts.resume))
checkpoint = torch.load(opts.resume)
opts.start_epoch = checkpoint['epoch']
best_val = checkpoint['best_val']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(opts.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(opts.resume))
best_val = float('inf')
else:
best_val = float('inf')
# models are save only when their loss obtains the best value in the validation
valtrack = 0
print('There are %d parameter groups' % len(optimizer.param_groups))
print('Initial base params lr: %f' % optimizer.param_groups[0]['lr'])
print('Initial vision params lr: %f' % optimizer.param_groups[1]['lr'])
# data preparation, loaders
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
cudnn.benchmark = True
# preparing the training laoder
train_loader = torch.utils.data.DataLoader(
ImagerLoader(opts.img_path,
transforms.Compose([
transforms.Scale(256), # rescale the image keeping the original aspect ratio
transforms.CenterCrop(256), # we get only the center of that rescaled
transforms.RandomCrop(224), # random crop within the center crop
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]),data_path=opts.data_path,partition='train',sem_reg=opts.semantic_reg),
batch_size=opts.batch_size, shuffle=True,
num_workers=opts.workers, pin_memory=True)
print('Training loader prepared.')
# preparing validation loader
val_loader = torch.utils.data.DataLoader(
ImagerLoader(opts.img_path,
transforms.Compose([
transforms.Scale(256), # rescale the image keeping the original aspect ratio
transforms.CenterCrop(224), # we get only the center of that rescaled
transforms.ToTensor(),
normalize,
]),data_path=opts.data_path,sem_reg=opts.semantic_reg,partition='val'),
batch_size=opts.batch_size, shuffle=False,
num_workers=opts.workers, pin_memory=True)
print('Validation loader prepared.')
# run epochs
for epoch in range(opts.start_epoch, opts.epochs):
# train for one epoch
train(train_loader, model, criterion, optimizer, epoch)
# evaluate on validation set
if (epoch+1) % opts.valfreq == 0 and epoch != 0:
val_loss = validate(val_loader, model, criterion)
# check patience
if val_loss >= best_val:
valtrack += 1
else:
valtrack = 0
if valtrack >= opts.patience:
# we switch modalities
opts.freeVision = opts.freeRecipe; opts.freeRecipe = not(opts.freeVision)
# change the learning rate accordingly
adjust_learning_rate(optimizer, epoch, opts)
valtrack = 0
# save the best model
is_best = val_loss < best_val
best_val = min(val_loss, best_val)
save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'best_val': best_val,
'optimizer': optimizer.state_dict(),
'valtrack': valtrack,
'freeVision': opts.freeVision,
'curr_val': val_loss,
}, is_best)
print('** Validation: %f (best) - %d (valtrack)' % (best_val, valtrack))
def train(train_loader, model, criterion, optimizer, epoch):
batch_time = AverageMeter()
data_time = AverageMeter()
cos_losses = AverageMeter()
if opts.semantic_reg:
img_losses = AverageMeter()
rec_losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to train mode
model.train()
end = time.time()
for i, (input, target) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
input_var = list()
for j in range(len(input)):
# if j>1:
input_var.append(input[j].to(device))
# else:
# input_var.append(input[j].to(device))
target_var = list()
for j in range(len(target)):
target_var.append(target[j].to(device))
# compute output
output = model(input_var[0], input_var[1], input_var[2], input_var[3], input_var[4])
# compute loss
if opts.semantic_reg:
cos_loss = criterion[0](output[0], output[1], target_var[0].float())
img_loss = criterion[1](output[2], target_var[1])
rec_loss = criterion[1](output[3], target_var[2])
# combined loss
loss = opts.cos_weight * cos_loss +\
opts.cls_weight * img_loss +\
opts.cls_weight * rec_loss
# measure performance and record losses
cos_losses.update(cos_loss.data, input[0].size(0))
img_losses.update(img_loss.data, input[0].size(0))
rec_losses.update(rec_loss.data, input[0].size(0))
else:
loss = criterion(output[0], output[1], target_var[0])
# measure performance and record loss
cos_losses.update(loss.data[0], input[0].size(0))
# compute gradient and do Adam step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if opts.semantic_reg:
print('Epoch: {0}\t'
'cos loss {cos_loss.val:.4f} ({cos_loss.avg:.4f})\t'
'img Loss {img_loss.val:.4f} ({img_loss.avg:.4f})\t'
'rec loss {rec_loss.val:.4f} ({rec_loss.avg:.4f})\t'
'vision ({visionLR}) - recipe ({recipeLR})\t'.format(
epoch, cos_loss=cos_losses, img_loss=img_losses,
rec_loss=rec_losses, visionLR=optimizer.param_groups[1]['lr'],
recipeLR=optimizer.param_groups[0]['lr']))
else:
print('Epoch: {0}\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'vision ({visionLR}) - recipe ({recipeLR})\t'.format(
epoch, loss=cos_losses, visionLR=optimizer.param_groups[1]['lr'],
recipeLR=optimizer.param_groups[0]['lr']))
def validate(val_loader, model, criterion):
batch_time = AverageMeter()
cos_losses = AverageMeter()
if opts.semantic_reg:
img_losses = AverageMeter()
rec_losses = AverageMeter()
# switch to evaluate mode
model.eval()
end = time.time()
for i, (input, target) in enumerate(val_loader):
input_var = list()
for j in range(len(input)):
# input_var.append(torch.autograd.Variable(input[j], volatile=True).cuda())
input_var.append(input[j].to(device))
target_var = list()
for j in range(len(target)-2): # we do not consider the last two objects of the list
target[j] = target[j].to(device)
target_var.append(target[j].to(device))
# compute output
output = model(input_var[0],input_var[1], input_var[2], input_var[3], input_var[4])
if i==0:
data0 = output[0].data.cpu().numpy()
data1 = output[1].data.cpu().numpy()
data2 = target[-2]
data3 = target[-1]
else:
data0 = np.concatenate((data0,output[0].data.cpu().numpy()),axis=0)
data1 = np.concatenate((data1,output[1].data.cpu().numpy()),axis=0)
data2 = np.concatenate((data2,target[-2]),axis=0)
data3 = np.concatenate((data3,target[-1]),axis=0)
medR, recall = rank(opts, data0, data1, data2)
print('* Val medR {medR:.4f}\t'
'Recall {recall}'.format(medR=medR, recall=recall))
return medR
def rank(opts, img_embeds, rec_embeds, rec_ids):
random.seed(opts.seed)
type_embedding = opts.embtype
im_vecs = img_embeds
instr_vecs = rec_embeds
names = rec_ids
# Sort based on names to always pick same samples for medr
idxs = np.argsort(names)
names = names[idxs]
# Ranker
N = opts.medr
idxs = range(N)
glob_rank = []
glob_recall = {1:0.0,5:0.0,10:0.0}
for i in range(10):
ids = random.sample(range(0,len(names)), N)
im_sub = im_vecs[ids,:]
instr_sub = instr_vecs[ids,:]
ids_sub = names[ids]
# if params.embedding == 'image':
if type_embedding == 'image':
sims = np.dot(im_sub,instr_sub.T) # for im2recipe
else:
sims = np.dot(instr_sub,im_sub.T) # for recipe2im
med_rank = []
recall = {1:0.0,5:0.0,10:0.0}
for ii in idxs:
name = ids_sub[ii]
# get a column of similarities
sim = sims[ii,:]
# sort indices in descending order
sorting = np.argsort(sim)[::-1].tolist()
# find where the index of the pair sample ended up in the sorting
pos = sorting.index(ii)
if (pos+1) == 1:
recall[1]+=1
if (pos+1) <=5:
recall[5]+=1
if (pos+1)<=10:
recall[10]+=1
# store the position
med_rank.append(pos+1)
for i in recall.keys():
recall[i]=recall[i]/N
med = np.median(med_rank)
# print "median", med
for i in recall.keys():
glob_recall[i]+=recall[i]
glob_rank.append(med)
for i in glob_recall.keys():
glob_recall[i] = glob_recall[i]/10
return np.average(glob_rank), glob_recall
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
filename = opts.snapshots + 'model_e%03d_v-%.3f.pth.tar' % (state['epoch'],state['best_val'])
if is_best:
torch.save(state, filename)
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def adjust_learning_rate(optimizer, epoch, opts):
"""Switching between modalities"""
# parameters corresponding to the rest of the network
optimizer.param_groups[0]['lr'] = opts.lr * opts.freeRecipe
# parameters corresponding to visionMLP
optimizer.param_groups[1]['lr'] = opts.lr * opts.freeVision
print('Initial base params lr: %f' % optimizer.param_groups[0]['lr'])
print('Initial vision lr: %f' % optimizer.param_groups[1]['lr'])
# after first modality change we set patience to 3
opts.patience = 3
if __name__ == '__main__':
main()