-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsedimentdrift.py
184 lines (153 loc) · 7.72 KB
/
sedimentdrift.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
# This file is part of OpenDrift.
#
# OpenDrift is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, version 2
#
# OpenDrift is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with OpenDrift. If not, see <https://www.gnu.org/licenses/>.
#
# Copyright 2020, Knut-Frode Dagestad, MET Norway
"""
SedimentDrift is an OpenDrift module for drift and settling of sediments.
Based on work by Simon Weppe, MetOcean Solutions Ltd.
"""
import numpy as np
from opendrift.models.oceandrift import Lagrangian3DArray
from opendrift.models.oceandrift import OceanDrift
from scipy.interpolate import interp1d
from iapws import IAPWS97
class SedimentElement(Lagrangian3DArray):
variables = Lagrangian3DArray.add_variables([
('settled', {'dtype': np.int16, # 0 is active, 1 is settled
'unit': '1',
'default': 0}),
('resuspended', {'dtype': np.int16, # 0 is not, 1 is resuspended
'unit': '1',
'default': 0}),
('diameter', {'dtype': np.float32,
'units': 'm',
'default': 0.006546e-3}),
('density', {'dtype': np.float32,
'units': 'kg/L',
'default': 1500.0}),
('terminal_velocity', {'dtype': np.float32,
'units': 'm/s',
'default': 0.001})
])
class SedimentDrift(OceanDrift):
"""Model for sediment drift, under development
"""
ElementType = SedimentElement
required_variables = {
'x_sea_water_velocity': {'fallback': 0},
'y_sea_water_velocity': {'fallback': 0},
'sea_surface_wave_significant_height': {'fallback': 0},
'sea_ice_area_fraction': {'fallback': 0},
'x_wind': {'fallback': 0},
'y_wind': {'fallback': 0},
'land_binary_mask': {'fallback': None},
'sea_floor_depth_below_sea_level': {'fallback': 100},
'ocean_vertical_diffusivity': {'fallback': 0.02, 'profiles': True},
'sea_water_temperature': {'fallback': 10, 'profiles': True},
'sea_water_salinity': {'fallback': 34, 'profiles': True},
'surface_downward_x_stress': {'fallback': 0},
'surface_downward_y_stress': {'fallback': 0},
'turbulent_kinetic_energy': {'fallback': 0},
'turbulent_generic_length_scale': {'fallback': 0},
'upward_sea_water_velocity': {'fallback': 0},
'sea_surface_wave_stokes_drift_x_velocity': {'fallback': 0.01},
'sea_surface_wave_stokes_drift_y_velocity': {'fallback': 0.01}
}
def __init__(self, *args, **kwargs):
""" Constructor of SedimentDrift module
"""
super(SedimentDrift, self).__init__(*args, **kwargs)
# By default, sediments do not strand towards coastline
# TODO: A more sophisticated stranding algorithm is needed
self._set_config_default('general:coastline_action', 'previous')
# Vertical mixing is enabled as default
self._set_config_default('drift:vertical_mixing', True)
self._add_config({'vertical_mixing:update_terminal_velocity': {'type': 'bool', 'default': True,
'description': 'Update terminal velocity',
'level': self.CONFIG_LEVEL_ESSENTIAL}
})
def update_terminal_velocity(self, Tprofiles=None, Sprofiles=None, z_index=None):
#
# Method that calculates sinking velocity according to Stokes law for any
# sediment of a given diameter and density. The values of densities for sand and
# clay are taken from literature while the diameters are taken from observations
# done in Glomma June 2020. Particle sizes ranged from 0.0002 - 0.2 mm
#
# prepare interpolation of temp, salt
if not (Tprofiles == None and Sprofiles == None):
if z_index == None:
z_i = range(Tprofiles.shape[0]) # evtl. move out of loop
z_index = interp1d(-self.environment_profiles['z'], z_i, bounds_error=False) # evtl. move out of loop
zi = z_index(-self.elements.z)
upper = np.maximum(np.floor(zi).astype(np.int), 0)
lower = np.minimum(upper + 1, Tprofiles.shape[0] - 1)
weight_upper = 1 - (zi - upper)
# do interpolation of temp, salt if profiles were passed into this function,
# if not, use reader by calling self.environment
if Tprofiles == None:
T0 = self.environment.sea_water_temperature
else:
T0 = Tprofiles[upper, range(Tprofiles.shape[1])] * weight_upper + Tprofiles[
lower, range(Tprofiles.shape[1])] * (1 - weight_upper)
if Sprofiles == None:
S0 = self.environment.sea_water_salinity
else:
S0 = Sprofiles[upper, range(Sprofiles.shape[1])] * weight_upper + Sprofiles[
lower, range(Sprofiles.shape[1])] * (1 - weight_upper)
self.elements.terminal_velocity = \
self.calc_terminal_velocity(self.elements.density, self.elements.diameter, T0, S0)
# Separate the actual calculation so that we can use unit-testing
# Returns terminal velocity in m/s
def calc_terminal_velocity(self, density_p, diameter_p, T0, S0):
density_w = self.sea_water_density(T=T0, S=S0)
# The density difference between a clay/sand particle and the ambient water
dr = density_w - density_p
# water viscosity
# dynamic_viscosity = IAPWS97(T=T0[0], P=0.0)
# dynamic_viscosity = 0.001 * (1.7915 - 0.0538 * T0 + 0.007 * (T0 ** (2.0)) - 0.0023 * S0)
dynamic_viscosity = 0.0014
# ~0.0014 kg m-1 s-1
g = 9.81 # ms-2
return (diameter_p ** 2 * dr * g) / (18. * dynamic_viscosity)
def update(self):
"""Update positions and properties of sediment particles.
"""
# Advecting here all elements, but want to soon add
# possibility of not moving settled elements, until
# they are re-suspended. May then need to send a boolean
# array to advection methods below
if self.get_config('vertical_mixing:update_terminal_velocity') is True:
self.update_terminal_velocity()
self.advect_ocean_current()
self.vertical_advection()
self.advect_wind() # Wind shear in upper 10cm of ocean
self.stokes_drift()
self.vertical_mixing() # Including buoyancy and settling
self.resuspension()
def bottom_interaction(self, seafloor_depth):
"""Sub method of vertical_mixing, determines settling"""
# Deactivate elements closer than 1m from seafloor.
# Later these should not be deactivated, but rather marked
# as settled, for possibly later resuspension.
self.deactivate_elements(self.elements.z < seafloor_depth + 1,
reason='settled')
def resuspension(self):
"""Resuspending elements if current speed > .25 m/s"""
resuspending = np.logical_and(self.current_speed() > .25, self.elements.moving == 0)
if np.sum(resuspending) > 0:
# Allow moving again
self.elements.moving[resuspending] = 1
self.elements.resuspended[resuspending] = 1
# Suspend 1 cm above seafloor
self.elements.z[resuspending] = self.elements.z[resuspending] + .05 # 5 cm