-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathIOwrite.py
561 lines (471 loc) · 26.3 KB
/
IOwrite.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
import os
import time
from datetime import datetime
import logging
import numpy as np
from netCDF4 import Dataset
from netCDF4 import num2date
__author__ = 'Trond Kristiansen'
__email__ = '[email protected]'
__created__ = datetime(2009, 3, 2)
__modified__ = datetime(2014, 10, 23)
__version__ = "1.1"
__status__ = "Development"
def help():
"""
This function generates a CLIM file from scratch. The variables created include:
salt, temp, u, v, ubar, vbar, zeta, and time. Time dimension for each variable is ocean_time which is days
since 1948/1/1.
This file is netcdf CF compliant and to check the CLIM file for CF compliancy:
http://titania.badc.rl.ac.uk/cgi-bin/cf-checker.pl?cfversion=1.0
(also see: https://www.myroms.org/forum/viewtopic.php?f=30&t=1450&p=5209&hilit=cf+compliant#p5209)
This function is called from model2roms.py.
"""
def write_clim_file(confM2R, ntime, myvar, data1=None, data2=None, data3=None, data4=None):
if confM2R.output_format == 'NETCDF4':
myzlib = True
else:
myzlib = False
grdROMS = confM2R.grdROMS
if confM2R.grdROMS.ioClimInitialized is False:
confM2R.grdROMS.ioClimInitialized = True
if os.path.exists(confM2R.clim_name):
os.remove(confM2R.clim_name)
f1 = Dataset(confM2R.clim_name, mode='w', format=confM2R.output_format)
f1.title = "Climatology forcing file (CLIM) used for forcing the ROMS model"
f1.description = "Created for grid file: %s" % (confM2R.roms_grid_path)
f1.grd_file = "Gridfile: %s" % (confM2R.roms_grid_path)
f1.history = "Created " + time.ctime(time.time())
f1.source = "{} ({})".format(confM2R.author_name, confM2R.author_email)
f1.type = "File in %s format created using MODEL2ROMS" % (confM2R.output_format)
f1.link = "https://github.com/trondkr/model2roms"
f1.Conventions = "CF-1.0"
# Define dimensions
f1.createDimension('xi_rho', grdROMS.xi_rho)
f1.createDimension('eta_rho', grdROMS.eta_rho)
f1.createDimension('xi_u', grdROMS.xi_u)
f1.createDimension('eta_u', grdROMS.eta_u)
f1.createDimension('xi_v', grdROMS.xi_v)
f1.createDimension('eta_v', grdROMS.eta_v)
f1.createDimension('xi_psi', grdROMS.xi_psi)
f1.createDimension('eta_psi', grdROMS.eta_psi)
f1.createDimension('s_rho', len(grdROMS.s_rho))
f1.createDimension('s_w', len(grdROMS.s_w))
if confM2R.isclimatology:
f1.createDimension('clim_time', 12)
else:
f1.createDimension('ocean_time', None)
vnc = f1.createVariable('lon_rho', 'd', ('eta_rho', 'xi_rho',), zlib=myzlib, fill_value=grdROMS.fillval)
vnc.long_name = 'Longitude of RHO-points'
vnc.units = 'degree_east'
vnc.standard_name = 'longitude'
vnc[:, :] = grdROMS.lon_rho
vnc = f1.createVariable('lat_rho', 'd', ('eta_rho', 'xi_rho',), zlib=myzlib, fill_value=grdROMS.fillval)
vnc.long_name = 'Latitude of RHO-points'
vnc.units = 'degree_north'
vnc.standard_name = 'latitude'
vnc[:, :] = grdROMS.lat_rho
vnc = f1.createVariable('lon_u', 'd', ('eta_u', 'xi_u',), zlib=myzlib, fill_value=grdROMS.fillval)
vnc.long_name = 'Longitude of U-points'
vnc.units = 'degree_east'
vnc.standard_name = 'longitude'
vnc[:, :] = grdROMS.lon_u
vnc = f1.createVariable('lat_u', 'd', ('eta_u', 'xi_u',), zlib=myzlib, fill_value=grdROMS.fillval)
vnc.long_name = 'Latitude of U-points'
vnc.units = 'degree_north'
vnc.standard_name = 'latitude'
vnc[:, :] = grdROMS.lat_u
vnc = f1.createVariable('lon_v', 'd', ('eta_v', 'xi_v',), zlib=myzlib, fill_value=grdROMS.fillval)
vnc.long_name = 'Longitude of V-points'
vnc.units = 'degree_east'
vnc.standard_name = 'longitude'
vnc[:, :] = grdROMS.lon_v
vnc = f1.createVariable('lat_v', 'd', ('eta_v', 'xi_v',), zlib=myzlib, fill_value=grdROMS.fillval)
vnc.long_name = 'Latitude of V-points'
vnc.units = 'degree_north'
vnc.standard_name = 'latitude'
vnc[:, :] = grdROMS.lat_v
vnc = f1.createVariable('lat_psi', 'd', ('eta_psi', 'xi_psi',), zlib=myzlib, fill_value=grdROMS.fillval)
vnc.long_name = 'Latitude of PSI-points'
vnc.units = 'degree_north'
vnc.standard_name = 'latitude'
vnc[:, :] = grdROMS.lat_psi
vnc = f1.createVariable('lon_psi', 'd', ('eta_psi', 'xi_psi',), zlib=myzlib, fill_value=grdROMS.fillval)
vnc.long_name = 'Longitude of PSI-points'
vnc.units = 'degree_east'
vnc.standard_name = 'longitude'
vnc[:, :] = grdROMS.lon_psi
vnc = f1.createVariable('h', 'd', ('eta_rho', 'xi_rho',), zlib=myzlib, fill_value=grdROMS.fillval)
vnc.long_name = 'Bathymetry at RHO-points'
vnc.units = 'meter'
vnc.field = "bath, scalar"
vnc[:, :] = grdROMS.h
# vnc = f1.createVariable('f', 'd', ('eta_rho', 'xi_rho',), zlib=myzlib, fill_value=grdROMS.fillval)
# vnc.long_name = 'Coriolis parameter at RHO-points'
# vnc.units = 'second-1'
# vnc.field = "Coriolis, scalar"
# vnc[:, :] = grdROMS.f
vnc = f1.createVariable('pm', 'd', ('eta_rho', 'xi_rho',), zlib=myzlib, fill_value=grdROMS.fillval)
vnc.long_name = 'curvilinear coordinate metric in XI'
vnc.units = 'meter-1'
vnc.field = "pm, scalar"
vnc[:, :] = grdROMS.pm
vnc = f1.createVariable('pn', 'd', ('eta_rho', 'xi_rho',), zlib=myzlib, fill_value=grdROMS.fillval)
vnc.long_name = 'curvilinear coordinate metric in ETA'
vnc.units = 'meter-1'
vnc.field = "pn, scalar"
vnc[:, :] = grdROMS.pn
vnc = f1.createVariable('s_rho', 'd', ('s_rho',), zlib=myzlib, fill_value=grdROMS.fillval)
vnc.long_name = "S-coordinate at RHO-points"
vnc.valid_min = -1.
vnc.valid_max = 0.
if grdROMS.vtransform == 2:
vnc.standard_name = "ocean_s_coordinate_g2"
vnc.formula_terms = "s: s_rho C: Cs_r eta: zeta depth: h depth_c: hc"
if grdROMS.vtransform == 1:
vnc.standard_name = "ocean_s_coordinate_g1"
vnc.formula_terms = "s: s_rho C: Cs_r eta: zeta depth: h depth_c: hc"
vnc.field = "s_rho, scalar"
vnc[:] = grdROMS.s_rho
vnc = f1.createVariable('s_w', 'd', ('s_w',), zlib=myzlib, fill_value=grdROMS.fillval)
vnc.long_name = "S-coordinate at W-points"
vnc.valid_min = -1.
vnc.valid_max = 0.
if grdROMS.vtransform == 2:
vnc.standard_name = "ocean_s_coordinate_g2"
vnc.formula_terms = "s: s_w C: Cs_w eta: zeta depth: h depth_c: hc"
if grdROMS.vtransform == 1:
vnc.standard_name = "ocean_s_coordinate_g1"
vnc.formula_terms = "s: s_w C: Cs_w eta: zeta depth: h depth_c: hc"
vnc.field = "s_w, scalar"
vnc[:] = grdROMS.s_w
vnc = f1.createVariable('Cs_r', 'd', ('s_rho',), zlib=myzlib, fill_value=grdROMS.fillval)
vnc.long_name = "S-coordinate stretching curves at RHO-points"
vnc.valid_min = -1.
vnc.valid_max = 0.
vnc.field = "s_rho, scalar"
vnc[:] = grdROMS.Cs_rho
vnc = f1.createVariable('Cs_w', 'd', ('s_w',), zlib=myzlib, fill_value=grdROMS.fillval)
vnc.long_name = "S-coordinate stretching curves at W-points"
vnc.valid_min = -1.
vnc.valid_max = 0.
vnc.field = "s_w, scalar"
vnc[:] = grdROMS.Cs_w
vnc = f1.createVariable('hc', 'd')
vnc.long_name = "S-coordinate parameter, critical depth";
vnc.units = "meter"
vnc[:] = grdROMS.hc
vnc = f1.createVariable('z_r', 'd', ('s_rho', 'eta_rho', 'xi_rho',), zlib=myzlib, fill_value=grdROMS.fillval)
vnc.long_name = "Sigma layer to depth matrix";
vnc.units = "meter"
vnc[:, :, :] = grdROMS.z_r
vnc = f1.createVariable('z_w', 'd', ('s_w', 'eta_rho', 'xi_rho',), zlib=myzlib, fill_value=grdROMS.fillval)
vnc.long_name = "Sigma layer to depth matrix";
vnc.units = "meter"
vnc[:, :, :] = grdROMS.z_w
vnc = f1.createVariable('Tcline', 'd')
vnc.long_name = "S-coordinate surface/bottom layer width"
vnc.units = "meter"
vnc[:] = grdROMS.tcline
vnc = f1.createVariable('theta_s', 'd')
vnc.long_name = "S-coordinate surface control parameter"
vnc[:] = grdROMS.theta_s
vnc = f1.createVariable('theta_b', 'd')
vnc.long_name = "S-coordinate bottom control parameter"
vnc[:] = grdROMS.theta_b
vnc = f1.createVariable('angle', 'd', ('eta_rho', 'xi_rho',), zlib=myzlib, fill_value=grdROMS.fillval)
vnc.long_name = "angle between xi axis and east"
vnc.units = "radian"
vnc[:, :] = grdROMS.angle
# Now start creating variables for regular climatology/bry/init creations
if not confM2R.isclimatology:
v_time = f1.createVariable('ocean_time', 'd', ('ocean_time',), zlib=myzlib, fill_value=grdROMS.fillval)
v_time.long_name = 'seconds since 1948-01-01 00:00:00'
v_time.units = 'seconds since 1948-01-01 00:00:00'
v_time.field = 'time, scalar, series'
if (confM2R.ocean_indata_type == "NORESM"):
v_time.calendar = 'noleap'
else:
v_time.calendar = 'standard'
v_u = f1.createVariable('u', 'f', ('ocean_time', 's_rho', 'eta_u', 'xi_u',), zlib=myzlib,
fill_value=grdROMS.fillval)
v_u.long_name = "u-momentum component"
v_u.units = "meter second-1"
v_u.time = "ocean_time"
v_u.field = "u-velocity, scalar, series"
#v_u.missing_value = grdROMS.fillval
v_v = f1.createVariable('v', 'f', ('ocean_time', 's_rho', 'eta_v', 'xi_v',), zlib=myzlib,
fill_value=grdROMS.fillval)
v_v.long_name = "v-momentum component"
v_v.units = "meter second-1"
v_v.time = "ocean_time"
v_v.field = "v-velocity, scalar, series"
#v_v.missing_value = grdROMS.fillval
v_salt = f1.createVariable('salt', 'f', ('ocean_time', 's_rho', 'eta_rho', 'xi_rho',), zlib=myzlib,
fill_value=grdROMS.fillval)
v_salt.long_name = "salinity"
v_salt.time = "ocean_time"
v_salt.field = "salinity, scalar, series"
#v_salt.missing_value = grdROMS.fillval
v_temp = f1.createVariable('temp', 'f', ('ocean_time', 's_rho', 'eta_rho', 'xi_rho',), zlib=myzlib,
fill_value=grdROMS.fillval)
v_temp.long_name = "potential temperature"
v_temp.units = "Celsius"
v_temp.time = "ocean_time"
v_temp.field = "temperature, scalar, series"
#v_temp.missing_value = grdROMS.fillval
v_ssh = f1.createVariable('zeta', 'f', ('ocean_time', 'eta_rho', 'xi_rho',), zlib=myzlib,
fill_value=grdROMS.fillval)
v_ssh.long_name = "sea level"
v_ssh.units = "meter"
v_ssh.time = "ocean_time"
v_ssh.field = "sea level, scalar, series"
#v_ssh.missing_value = grdROMS.fillval
v_ubar = f1.createVariable('ubar', 'f', ('ocean_time', 'eta_u', 'xi_u',), zlib=myzlib,
fill_value=grdROMS.fillval)
v_ubar.long_name = "u-2D momentum"
v_ubar.units = "meter second-1"
v_ubar.time = "ocean_time"
v_ubar.field = "u2-D velocity, scalar, series"
#v_ubar.missing_value = grdROMS.fillval
v_vbar = f1.createVariable('vbar', 'f', ('ocean_time', 'eta_v', 'xi_v',), zlib=myzlib,
fill_value=grdROMS.fillval)
v_vbar.long_name = "v-2D momentum"
v_vbar.units = "meter second-1"
v_vbar.time = "ocean_time"
v_vbar.field = "v2-D velocity, scalar, series"
#v_vbar.missing_value = grdROMS.fillval
if confM2R.write_ice:
ageice = f1.createVariable('ageice', 'f', ('ocean_time', 'eta_rho', 'xi_rho',), zlib=myzlib,
fill_value=grdROMS.fillval)
ageice.long_name = "time-averaged age of the ice"
ageice.units = "years"
ageice.time = "ocean_time"
ageice.field = "ice age, scalar, series"
#ageice.missing_value = grdROMS.fillval
uice = f1.createVariable('uice', 'd', ('ocean_time', 'eta_u', 'xi_u',), zlib=myzlib,
fill_value=grdROMS.fillval)
uice.long_name = "time-averaged u-component of ice velocity"
uice.units = "meter second-1"
uice.time = "ocean_time"
uice.field = "u-component of ice velocity, scalar, series"
#uice.missing_value = grdROMS.fillval
vice = f1.createVariable('vice', 'd', ('ocean_time', 'eta_v', 'xi_v',), zlib=myzlib,
fill_value=grdROMS.fillval)
vice.long_name = "time-averaged v-component of ice velocity"
vice.units = "meter second-1"
vice.time = "ocean_time"
vice.field = "v-component of ice velocity, scalar, series"
#vice.missing_value = grdROMS.fillval
aice = f1.createVariable('aice', 'f', ('ocean_time', 'eta_rho', 'xi_rho',), zlib=myzlib,
fill_value=grdROMS.fillval)
aice.long_name = "time-averaged fraction of cell covered by ice"
aice.time = "ocean_time"
aice.field = "ice concentration, scalar, series"
#aice.missing_value = grdROMS.fillval
hice = f1.createVariable('hice', 'f', ('ocean_time', 'eta_rho', 'xi_rho',), zlib=myzlib,
fill_value=grdROMS.fillval)
hice.long_name = "time-averaged average ice thickness in cell"
hice.units = "meter"
hice.time = "ocean_time"
hice.field = "ice thickness, scalar, series"
#hice.missing_value = grdROMS.fillval
snow_thick = f1.createVariable('snow_thick', 'f', ('ocean_time', 'eta_rho', 'xi_rho',), zlib=myzlib,
fill_value=grdROMS.fillval)
snow_thick.long_name = "time-averaged thickness of snow cover"
snow_thick.units = "meter"
snow_thick.time = "ocean_time"
snow_thick.field = "snow thickness, scalar, series"
#snow_thick.missing_value = grdROMS.fillval
ti = f1.createVariable('ti', 'f', ('ocean_time', 'eta_rho', 'xi_rho',), zlib=myzlib,
fill_value=grdROMS.fillval)
ti.long_name = "time-averaged interior ice temperature"
ti.units = "degrees Celcius"
ti.time = "ocean_time"
ti.field = "interior temperature, scalar, series"
#ti.missing_value = grdROMS.fillval
sfwat = f1.createVariable('sfwat', 'f', ('ocean_time', 'eta_rho', 'xi_rho',), zlib=myzlib,
fill_value=grdROMS.fillval)
sfwat.long_name = "time-averaged surface melt water thickness on ice"
sfwat.units = "meter"
sfwat.time = "ocean_time"
sfwat.field = "melt water thickness, scalar, series"
#sfwat.missing_value = grdROMS.fillval
tisrf = f1.createVariable('tisrf', 'f', ('ocean_time', 'eta_rho', 'xi_rho',), zlib=myzlib,
fill_value=grdROMS.fillval)
tisrf.long_name = "time-averaged temperature of ice surface"
tisrf.units = "degrees Celcius"
tisrf.time = "ocean_time"
tisrf.field = "surface temperature, scalar, series"
#tisrf.missing_value = grdROMS.fillval
sig11 = f1.createVariable('sig11', 'f', ('ocean_time', 'eta_rho', 'xi_rho',), zlib=myzlib,
fill_value=grdROMS.fillval)
sig11.long_name = "time-averaged internal ice stress 11 component"
sig11.units = "Newton meter-1"
sig11.time = "ocean_time"
sig11.field = "ice stress 11, scalar, series"
#sig11.missing_value = grdROMS.fillval
sig12 = f1.createVariable('sig12', 'f', ('ocean_time', 'eta_rho', 'xi_rho',), zlib=myzlib,
fill_value=grdROMS.fillval)
sig12.long_name = "time-averaged internal ice stress 12 component"
sig12.units = "Newton meter-1"
sig12.time = "ocean_time"
sig12.field = "ice stress 12, scalar, series"
#sig12.missing_value = grdROMS.fillval
sig22 = f1.createVariable('sig22', 'f', ('ocean_time', 'eta_rho', 'xi_rho',), zlib=myzlib,
fill_value=grdROMS.fillval)
sig22.long_name = "time-averaged internal ice stress 22 component"
sig22.units = "Newton meter-1"
sig22.time = "ocean_time"
sig22.field = "ice stress 22, scalar, series"
#sig22.missing_value = grdROMS.fillval
if confM2R.write_bcg:
v_o3_c = f1.createVariable('O3_c', 'f', ('ocean_time', 's_rho', 'eta_rho', 'xi_rho',), zlib=myzlib,
fill_value=grdROMS.fillval)
v_o3_c.long_name = "carbonate/total dissolved inorganic carbon"
v_o3_c.time = "ocean_time"
v_o3_c.units = "mmol C/m^3"
v_o3_c.field = "O3_c, scalar, series"
v_o3_ta = f1.createVariable('O3_TA', 'f', ('ocean_time', 's_rho', 'eta_rho', 'xi_rho',), zlib=myzlib,
fill_value=grdROMS.fillval)
v_o3_ta.long_name = "carbonate/bioalkalinity"
v_o3_ta.time = "ocean_time"
v_o3_ta.units = "umol/kg"
v_o3_ta.field = "O3_ta, scalar, series"
v_n1_p = f1.createVariable('N1_p', 'f', ('ocean_time', 's_rho', 'eta_rho', 'xi_rho',), zlib=myzlib,
fill_value=grdROMS.fillval)
v_n1_p.long_name = "phosphate/phosphorus"
v_n1_p.time = "ocean_time"
v_n1_p.units = "mmol P/m^3"
v_n1_p.field = "N1_p, scalar, series"
v_o2_o = f1.createVariable('O2_o', 'f', ('ocean_time', 's_rho', 'eta_rho', 'xi_rho',), zlib=myzlib,
fill_value=grdROMS.fillval)
v_o2_o.long_name = "oxygen/oxygen"
v_o2_o.time = "ocean_time"
v_o2_o.units = "mmol O_2/m^3"
v_o2_o.field = "O2_o, scalar, series"
v_n3_n = f1.createVariable('N3_n', 'f', ('ocean_time', 's_rho', 'eta_rho', 'xi_rho',), zlib=myzlib,
fill_value=grdROMS.fillval)
v_n3_n.long_name = "nitrate/nitrogen"
v_n3_n.time = "ocean_time"
v_n3_n.units = "mmol N/m^3"
v_n3_n.field = "N3_n, scalar, series"
v_n5_s = f1.createVariable('N5_s', 'f', ('ocean_time', 's_rho', 'eta_rho', 'xi_rho',), zlib=myzlib,
fill_value=grdROMS.fillval)
v_n5_s.long_name = "silicate/silicate"
v_n5_s.time = "ocean_time"
v_n5_s.units = "mmol Si/m^3"
v_n5_s.field = "N5_s, scalar, series"
# If we are creating climatology files with loops every 360 days, then create these variables here
if confM2R.isclimatology:
v_time = f1.createVariable('clim_time', 'd', ('clim_time',), zlib=myzlib, fill_value=grdROMS.fillval)
v_time.units = 'day'
v_time.field = 'time, scalar, series'
v_time.calendar = 'standard'
v_time.cycle_length = 360.
v_salt = f1.createVariable('salt', 'f', ('clim_time', 's_rho', 'eta_rho', 'xi_rho',), zlib=myzlib,
fill_value=grdROMS.fillval)
v_salt.long_name = "salinity"
v_salt.time = "clim_time"
v_salt.field = "salinity, scalar, series"
#v_salt.missing_value = grdROMS.fillval
v_salt = f1.createVariable('SSS', 'f', ('clim_time', 's_rho', 'eta_rho', 'xi_rho',), zlib=myzlib,
fill_value=grdROMS.fillval)
v_salt.long_name = "salinity"
v_salt.time = "clim_time"
v_salt.field = "salinity, scalar, series"
#v_salt.missing_value = grdROMS.fillval
v_temp = f1.createVariable('temp', 'f', ('clim_time', 's_rho', 'eta_rho', 'xi_rho',), zlib=myzlib,
fill_value=grdROMS.fillval)
v_temp.long_name = "potential temperature"
v_temp.units = "Celsius"
v_temp.time = "clim_time"
v_temp.field = "temperature, scalar, series"
#v_temp.missing_value = grdROMS.fillval
else:
f1 = Dataset(confM2R.clim_name, mode='a', format=confM2R.output_format)
if confM2R.isclimatology is False:
if myvar == confM2R.global_varnames[0]:
unit = confM2R.grdMODEL.timeunits.split(" ")[0]
# Convert the units from the datasource into seconds
secs_per_unit = {"seconds": 1, "hours": 3600, "days": 86400}[unit]
f1.variables['ocean_time'][ntime] = confM2R.grdROMS.time * secs_per_unit
d = num2date(grdROMS.time, units=grdROMS.timeunits,
calendar=f1.variables['ocean_time'].calendar)
grdROMS.message = d
logging.info(f"[M2R_IOWrite] ==> Identified secs_per_unit: {secs_per_unit} date: {d} time: {grdROMS.time}")
if myvar == 'temperature':
f1.variables['temp'][ntime, :, :, :] = data1
if myvar == 'salinity':
f1.variables['salt'][ntime, :, :, :] = data1
if myvar == 'ssh':
f1.variables['zeta'][ntime, :, :] = data1
if myvar == 'vvel':
f1.variables['u'][ntime, :, :, :] = data1
f1.variables['v'][ntime, :, :, :] = data2
f1.variables['ubar'][ntime, :, :] = data3
f1.variables['vbar'][ntime, :, :] = data4
if confM2R.write_ice:
if myvar == "ageice":
# print "NOTE! Setting values of ageice to ZERO! (IOWrite.py)"
data1 = np.where(abs(data1) > 100, 0, data1)
f1.variables['ageice'][ntime, :, :] = data1
if myvar == 'uice':
data1 = np.where(abs(data1) > 120, 0, data1)
f1.variables['uice'][ntime, :, :] = data1 * 0.01 # NorESM is cm/s divide by 100 to get m/s
f1.variables['sfwat'][ntime, :, :] = 0.
f1.variables['tisrf'][ntime, :, :] = 0.
f1.variables['ti'][ntime, :, :] = 0.
f1.variables['sig11'][ntime, :, :] = 0.
f1.variables['sig12'][ntime, :, :] = 0.
f1.variables['sig22'][ntime, :, :] = 0.
if confM2R.ocean_indata_type == 'GLORYS':
# Special care for GLORYS as dataset does not contain sea ice age and snow thickness
f1.variables['ageice'][ntime, :, :] = 0.
f1.variables['snow_thick'][ntime, :, :] = 0
if myvar == 'vice':
data1 = np.where(abs(data1) > 120, 0, data1)
f1.variables['vice'][ntime, :, :] = data1 * 0.01 # NorESM is cm/s divide by 100 to get m/s
if myvar == 'aice':
data1 = np.where(abs(data1) > 120, 0, data1)
f1.variables['aice'][ntime, :, :] = data1 * 0.01 # NorESM is % divide by 100 to get fraction
if myvar == 'hice':
data1 = np.where(abs(data1) > 10, 0, data1)
# data1 = np.ma.masked_where(abs(data1) > 10, data1)
f1.variables['hice'][ntime, :, :] = data1
if myvar == 'snow_thick':
# data1 = np.ma.masked_where(abs(data1) > 100, data1)
data1 = np.where(abs(data1) > 10, 0, data1)
f1.variables['snow_thick'][ntime, :, :] = data1
if confM2R.write_bcg:
if myvar in ['O3_c','O3_TA','N1_p','N3_n','N5_s','O2_o']:
data1 = np.where(abs(data1) < 0, 0, data1)
if confM2R.ocean_indata_type== "NORESM":
"""
Multiply the NORESM variable by conversion factors below:
NORESM name NORESM units ERSEM name ERSEM units Conversion factor
dissic [mol C/m3] O3_c [mmol C/m3] 1e3
talk [eq/m3] O3_TA [umol/kg] 1e6/1025
po4 [mol P/m3] N1_p [mmol P/m3] 1e3
no3 [mol N/m3] N3_n [mmol N/m3] 1e3
si [mol Si/m3] N5_s [mmol Si/m3] 1e3
o2 [mol O2/m3] O2_o [mmol O2/m3] 1e3
"""
if myvar=="O3_TA":
data1=data1*1.0e6/1025.
else:
data1=data1*1.0e3
f1.variables[myvar][ntime,:,:,:] = data1
if confM2R.isclimatology:
# Climatological time starts at the 15th of each month
d = datetime(2012, int(ntime) + 1, 1)
tt = d.timetuple()
if myvar == "temperature":
f1.variables['clim_time'][ntime] = tt.tm_yday + 15
grdROMS.message = tt.tm_yday + 15
if myvar == 'temperature':
f1.variables['temp'][ntime,:,:,:] = data1
if myvar == 'salinity':
f1.variables['salt'][ntime,:,:,:] = data1
f1.variables['SSS'][ntime,:,:,:] = data1
f1.close()