forked from simonweiler/LGN_Aanalysis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrampanalysis.m
419 lines (385 loc) · 19.2 KB
/
rampanalysis.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
function [blue_ramp, red_ramp]=rampanalysis(list, idx, pathName, fc, show, ramp_rtrace, user, filterephys,adata_dir);
%SW181229
%function to extract synaptic current peak, integral and photodiode signal
%for blue and red laser
%fct inputs
% list= list of xsg files per cell
% idx= indices for ramp recodings
% pathName=folder name of cell
% fc= factor for threshold std
% show= display plot or not (1 or 0)
% ramp_rtrace= extract and save raw traces or not (1 or 0)
%define temporal windows
base_start = 1;
base_end = 99;
pulse_start = 100;
pulse_end = 110;
redpeak_start = 100;
redpeak_end = 349;
bluepeak_start = 351;
bluepeak_end = 400;
%% TR2019: filtering
% filterephys = 1; % filtering yes/no?
cutoff = 1000; % Hz (use 500 Hz for mini event / amplitude detection and 1000Hz for max currents. Chen & Regehr 2000)
order = 4; % filter order ('pole'). (use 4 pole for minis and max current. Chen & Regehr 2000)
type = 'Bessel'; % filter type ('Bessel' or 'Butter' (for Butterworth -> ). Default: Bessel. Use Bessel at > 4 order to prevent ripples)
if filterephys;
disp('- - - - - - - -')
disp(['Filtering: ' num2str(order) ' pole ' type '-Filter w/ ' num2str(cutoff) ' Hz cutoff']);
disp('- - - - - - - -')
end
%% TR2019: plot specs
plotlength = 1; %seconds
savefig = 1; %save main figure
%create vector with start and end point for each ramp within the cell recording
%plot if wanted
if show==1
try; close(fig1); end
try; close(fitfig); end
fig1 = figure;
set(fig1, 'Name', char(pathName));
set(fig1, 'Position', [200, 0, 1500, 1000]);
end
if user==0%SW
runramp=1:11:length(idx);
runramp=[runramp runramp(end)+11];
%load each ramp per cell consecutively and extract relevant values such as
%snaptic current peak, integral and photodiode signal for blue and red
%temporal windows
for j=1:(length(idx)/11)% how many ramps in total; loop across ramps per cell
counter=1;
if show==1
subplot(2,(length(idx)/11)-2,j);
end
for i=runramp(j):runramp(j+1)-1;%within each ramp load xsg files (11 in total per ramp)
load([char(pathName) filesep list(idx(i)).name],'-mat');
sr = header.ephys.ephys.sampleRate;%check sample rate
srF = 1/(1000/sr);
samples_per_sweep = header.ephys.ephys.traceLength*sr;
timebase=1/sr:1/sr:samples_per_sweep/sr; %TR2019: timebase
traces=data.ephys.trace_1;%raw ephys trace
if filterephys % TR2019: filtering
traces = lowpassfilt(traces, order, cutoff, sr, type);
end
photodiode=data.acquirer.trace_1;%photodiode (PD) signal
try
blue_amp(j,counter)=header.pulseJacker.pulseJacker.pulseDataMap{4,counter+1}.amplitude;%blue laser amplitude set in ephus
catch
blue_amp(j,counter)=0;
end
try
red_amp(j,counter)=header.pulseJacker.pulseJacker.pulseDataMap{2,counter+1}.amplitude;%red laser amplitude set in ephus
catch
red_amp(j,counter)=0;
end
bs=traces(base_start*srF:base_end*srF,:);%first 100 ms baseline trace
bs_std=std(bs);%std of baseline trace
bs_traces=traces-mean(traces(base_start*srF:base_end*srF,:));%subtract baseline
bs_photodiode=photodiode-mean(photodiode(base_start*srF:base_end*srF,:));
%for first window
neg_peak1(j,counter)=min(bs_traces(redpeak_start*srF:redpeak_end*srF,:));%negative peak within the red stimulation window
pos_peak1(j,counter)=max(bs_traces(redpeak_start*srF:redpeak_end*srF,:));%positive peak within the red stimulation window
integ1(j,counter)=trapz(bs_traces(redpeak_start*srF:redpeak_end*srF,:));%Integral within the red stimulation window
neg_fail1(j,counter)=neg_peak1(j,counter)<fc*bs_std*(-1);%vector with binary values when neg peaks crossed definded std threshold
pos_fail1(j,counter)=pos_peak1(j,counter)>fc*bs_std;%vector with binary values when pos peaks crossed definded std threshold
%photodiode
PD1(j,counter)=mean(bs_photodiode(redpeak_start*srF:redpeak_end*srF,:));%max values of PD signal within the red stimulation window
%%%%extract irradiance for red%%%%
yirr_red(j,counter)=(12.19*PD1(j,counter)-0.4319)/100;
%for second window (same extraction as above for blue laser window
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%IMPLEMENTED AFTER MEETING FROM 190109%% neg_peak2(j,counter)=min(bs_traces(bluepeak_start*srF:bluepeak_end*srF,:));
%neg peak2 is calculated using the current difference between the last 10ms of
%the first time window and the peak in the subsequent 2nd window to
%correct for decay issues from the first pulse
neg_peak2(j,counter)=min(bs_traces(bluepeak_start*srF:bluepeak_end*srF,:))-mean(bs_traces((redpeak_end-10)*srF:redpeak_end*srF,:));
%%%IMPLEMENTED AFTER MEETING FROM 190109%For NMDA: approach is to fit an expontial and then subtract this from
%the actual curve to detect a second peak
if j<=2
pos_peak2(j,counter)=0;
pos_fail2(j,counter)=pos_peak2(j,counter)>fc*bs_std;
yf=bs_traces;
diff_bs_traces=bs_traces;
elseif j==3
pos_peak2(j,counter)=max(bs_traces(bluepeak_start*srF:(bluepeak_end+50)*srF,:));
pos_fail2(j,counter)=pos_peak2(j,counter)>fc*bs_std;
yf=bs_traces;
diff_bs_traces=bs_traces;
else j==4;
currmaxpos(j,counter)=max(bs_traces(bluepeak_start*srF:(bluepeak_end+50)*srF,:));
if currmaxpos(j,counter)>pos_peak1(j,counter)
pos_peak2(j,counter)=max(bs_traces(bluepeak_start*srF:(bluepeak_end+50)*srF,:));
yf=bs_traces;
diff_bs_traces=bs_traces;
pos_fail2(j,counter)=pos_peak2(j,counter)>fc*bs_std;
else
xt=1:50000;
A=pos_peak1(j,counter);
t1=find(bs_traces==A);
t1=t1(1);
t=t1:redpeak_end*srF;
t=t';
curr_t=bs_traces(t);
try
[f gof]=fit(t,curr_t,'exp1');
yf=f.a*exp(f.b*xt);
for m=1:10000;
diff_bs_traces(m,:)=bs_traces(m)-yf(m);
end
bs_diff_std=std(diff_bs_traces((redpeak_end-100)*srF:redpeak_end*srF,:));
if show==1
% fitfig = figure;
% plot(bs_traces);hold on;plot(yf);plot(diff_bs_traces);
% set(fitfig, 'Name', ['FIT:' char(pathName) ]);
end
pos_peak2(j,counter)=max(diff_bs_traces(bluepeak_start*srF:(bluepeak_end+50)*srF,:));
pos_fail2(j,counter)=pos_peak2(j,counter)>fc*bs_diff_std;
if gof.adjrsquare<0.9
pos_peak2(j,counter)=0;
pos_fail2(j,counter)=pos_peak2(j,counter)>fc*bs_diff_std;
end
catch
pos_peak2(j,counter)=0;
pos_fail2(j,counter)=pos_peak2(j,counter)>fc*bs_std;
yf=bs_traces;
diff_bs_traces=bs_traces;
end
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
integ2(j,counter)=trapz(bs_traces(bluepeak_start*srF:bluepeak_end*srF,:));
neg_fail2(j,counter)=neg_peak2(j,counter)<fc*bs_std*(-1);
%photodiode
PD2(j,counter)=mean(bs_photodiode(bluepeak_start*srF:bluepeak_end*srF,:));
%%%%extract irradiance for blue%%%%
yirr_blue(j,counter)=(7.232*PD2(j,counter)-0.9951)/100;%given in mW/mm2 compare to Klapoetke 2014
%ephys_traces
ephys_traces(:,counter,j)=bs_traces;
fit_traces(:,counter,j)=yf;
diff_traces(:,counter,j)=diff_bs_traces;
counter=counter+1;
traces=[];
%%%%%%%%%%%%%%plot
if show==1
plot(bs_traces(1:plotlength*sr,:),'linewidth',1,'Color',[0 0 0]+0.05*counter);
hold on;
ylabel('Synaptic input (pA)');
xlabel('Samples');
end
if show==1;
%%red vertical lines
hold on;
y1=get(gca,'ylim');
x1= redpeak_start*srF;
hold on;
p1=plot([x1 x1],y1,'--','Color','r');
p1.Color(4) = 0.3;
hold on;
y1=get(gca,'ylim');
x1=redpeak_end*srF;
hold on;
p2=plot([x1 x1],y1,'--','Color','r');
p2.Color(4) = 0.3;
hold on;
%%blue vertical lines
y1=get(gca,'ylim');
x1=bluepeak_start*srF;
hold on;
p3=plot([x1 x1],y1,'--','Color','b');
p3.Color(4) = 0.3;
hold on;
y1=get(gca,'ylim');
x1=bluepeak_end *srF;
hold on;
p4=plot([x1 x1],y1,'--','Color','b');
p4.Color(4) = 0.3;
end
end
end
%MF user==0
else % TR2019: check if this can be unified by simply parsing & injecting the different setup settinigs )sampling rat etc)
% like this this is really asking for trouble (e.g. changes in the first
% condition wont be automatically used here)
for j=1:length(idx)% how many ramps in total; loop across ramps per cell
counter=1;
if show==1
subplot(2,(length(idx))-2,j);
end
load([char(pathName) filesep list(idx(j)).name],'-mat');
sr = header.ephys.ephys.sampleRate;%check sample rate
srF = 1/(1000/sr);
samples_per_sweep = header.ephys.ephys.traceLength*sr;
timebase=1/sr:1/sr:samples_per_sweep/sr; %TR2019: timebase
traces=data.ephys.trace_1;%raw ephys trace
if filterephys % TR2019: filtering
traces = lowpassfilt(traces, order, cutoff, sr, type);
end
photodiode=data.acquirer.trace_1;%photodiode (PD) signal
ind_traces=reshape(traces,[length(traces)/11 11]);
photodiode=reshape(photodiode,[length(traces)/11 11]);
for i=1:size(ind_traces,2);%within each ramp load xsg files (11 in total per ramp)
traces_clip=ind_traces(:,i);
photodiode_clip=photodiode(:,i);
blue_amp(j,counter)=header.pulseJacker.pulseJacker.pulseDataMap{2,counter+1}.amplitude;%blue laser amplitude set in ephus
try
red_amp(j,counter)=header.pulseJacker.pulseJacker.pulseDataMap{3,counter+1}.amplitude;%red laser amplitude set in ephus
catch
red_amp(j,counter)=0;
end
bs=traces_clip(base_start*srF:base_end*srF,:);%first 100 ms baseline trace
bs_std=std(bs);%std of baseline trace
bs_traces=traces_clip-mean(traces_clip(base_start*srF:base_end*srF,:));%subtract baseline
bs_photodiode=photodiode_clip-mean(photodiode_clip(base_start*srF:base_end*srF,:));
%for first window
neg_peak1(j,counter)=min(bs_traces(redpeak_start*srF:redpeak_end*srF,:));%negative peak within the red stimulation window
pos_peak1(j,counter)=max(bs_traces(redpeak_start*srF:redpeak_end*srF,:));%positive peak within the red stimulation window
integ1(j,counter)=trapz(bs_traces(redpeak_start*srF:redpeak_end*srF,:));%Integral within the red stimulation window
neg_fail1(j,counter)=neg_peak1(j,counter)<fc*bs_std*(-1);%vector with binary values when neg peaks crossed definded std threshold
pos_fail1(j,counter)=pos_peak1(j,counter)>fc*bs_std;%vector with binary values when pos peaks crossed definded std threshold
%photodiode
PD1(j,counter)=mean(bs_photodiode(redpeak_start*srF:redpeak_end*srF,:));%max values of PD signal within the red stimulation window
%%%%extract irradiance for red%%%%
yirr_red(j,counter)=(104.1 *PD1(j,counter)-3.467)/100;
%for second window (same extraction as above for blue laser window
% neg_peak2(j,counter)=min(bs_traces(bluepeak_start*srF:bluepeak_end*srF,:));
% pos_peak2(j,counter)=max(bs_traces(bluepeak_start*srF:bluepeak_end*srF,:));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%IMPLEMENTED AFTER MEETING FROM 190109%% neg_peak2(j,counter)=min(bs_traces(bluepeak_start*srF:bluepeak_end*srF,:));
%neg peak2 is calculated using the current difference between the last 10ms of
%the first time window and the peak in the subsequent 2nd window to
%correct for decay issues from the first pulse
neg_peak2(j,counter)=min(bs_traces(bluepeak_start*srF:bluepeak_end*srF,:))-mean(bs_traces((redpeak_end-10)*srF:redpeak_end*srF,:));
%%%IMPLEMENTED AFTER MEETING FROM 190109%For NMDA: approach is to fit an expontial and then subtract this from
%the actual curve to detect a second peak
if j<=2
pos_peak2(j,counter)=0;
pos_fail2(j,counter)=pos_peak2(j,counter)>fc*bs_std;
yf=bs_traces;
diff_bs_traces=bs_traces;
elseif j==3
pos_peak2(j,counter)=max(bs_traces(bluepeak_start*srF:(bluepeak_end+50)*srF,:));
pos_fail2(j,counter)=pos_peak2(j,counter)>fc*bs_std;
yf=bs_traces;
diff_bs_traces=bs_traces;
else j==4;
currmaxpos(j,counter)=max(bs_traces(bluepeak_start*srF:(bluepeak_end+50)*srF,:));
if currmaxpos(j,counter)>pos_peak1(j,counter)
pos_peak2(j,counter)=max(bs_traces(bluepeak_start*srF:(bluepeak_end+50)*srF,:));
yf=bs_traces;
diff_bs_traces=bs_traces;
pos_fail2(j,counter)=pos_peak2(j,counter)>fc*bs_std;
else
xt=1:200000;
A=pos_peak1(j,counter);
t1=find(bs_traces==A);
t1=t1(1);
t=t1:redpeak_end*srF;
t=t';
curr_t=bs_traces(t);
try
[f gof]=fit(t,curr_t,'exp1');
yf=f.a*exp(f.b*xt);
for m=1:40000;
diff_bs_traces(m,:)=bs_traces(m)-yf(m);
end
bs_diff_std=std(diff_bs_traces((redpeak_end-100)*srF:redpeak_end*srF,:));
if show==1
%figure;plot(bs_traces);hold on;plot(yf);plot(diff_bs_traces);
end
pos_peak2(j,counter)=max(diff_bs_traces(bluepeak_start*srF:(bluepeak_end+50)*srF,:));
pos_fail2(j,counter)=pos_peak2(j,counter)>fc*bs_diff_std;
if gof.adjrsquare<0.9
pos_peak2(j,counter)=0;
pos_fail2(j,counter)=pos_peak2(j,counter)>fc*bs_diff_std;
end
catch
pos_peak2(j,counter)=0;
pos_fail2(j,counter)=pos_peak2(j,counter)>fc*bs_std;
yf=bs_traces;
diff_bs_traces=bs_traces;
end
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
integ2(j,counter)=trapz(bs_traces(bluepeak_start*srF:bluepeak_end*srF,:));
neg_fail2(j,counter)=neg_peak2(j,counter)<fc*bs_std*(-1);
% pos_fail2(j,counter)=pos_peak2(j,counter)>fc*bs_std;
%photodiode
PD2(j,counter)=mean(bs_photodiode(bluepeak_start*srF:bluepeak_end*srF,:));
%%%%extract irradiance for blue%%%%
yirr_blue(j,counter)=(679.2*PD2(j,counter)-26.82)/100;
%ephys_traces
ephys_traces(:,counter,j)=bs_traces;
fit_traces(:,counter,j)=yf;
diff_traces(:,counter,j)=diff_bs_traces;
counter=counter+1;
traces=[];
%%%%%%%%%%%%%%plot
if show==1
plot(bs_traces(1:plotlength*sr,:),'linewidth',1,'Color',[0 0 0]+0.05*counter);
hold on;
ylabel('Synaptic input (pA)');
xlabel('Samples');
end
if show==1;
%%red vertical lines
hold on;
y1=get(gca,'ylim');
x1= redpeak_start*srF;
hold on;
p1=plot([x1 x1],y1,'--','Color','r');
p1.Color(4) = 0.3;
hold on;
y1=get(gca,'ylim');
x1=redpeak_end*srF;
hold on;
p2=plot([x1 x1],y1,'--','Color','r');
p2.Color(4) = 0.3;
hold on;
%%blue vertical lines
y1=get(gca,'ylim');
x1=bluepeak_start*srF;
hold on;
p3=plot([x1 x1],y1,'--','Color','b');
p3.Color(4) = 0.3;
hold on;
y1=get(gca,'ylim');
x1=bluepeak_end *srF;
hold on;
p4=plot([x1 x1],y1,'--','Color','b');
p4.Color(4) = 0.3;
end
end
end
end
if savefig
cd(adata_dir);
saveas(fig1, [char(pathName) '.png'])
% try
% saveas(fitfig, [char(pathName) '.png'])
% end
end
%%%%%%%%%%%%%%%%%%%%% output %%%%%%%%%%%%%%%%%
red_ramp.neg_peak1=neg_peak1;
red_ramp.pos_peak1=pos_peak1;
red_ramp.integ1=integ1;
red_ramp.neg_fail1=neg_fail1;
red_ramp.pos_fail1=pos_fail1;
red_ramp.PD=PD1;
red_ramp.irr_red=yirr_red;
red_ramp.laser_amp=red_amp;
if ramp_rtrace==1;
red_ramp.ephys_traces=ephys_traces;
red_ramp.fit_traces=fit_traces;
red_ramp.diff_traces=diff_traces;
end
%create structure with extracted parameters
blue_ramp.neg_peak2=neg_peak2;
blue_ramp.pos_peak2=pos_peak2;
blue_ramp.integ2=integ2;
blue_ramp.neg_fail2=neg_fail2;
blue_ramp.pos_fail2=pos_fail2;
blue_ramp.PD=PD2;
blue_ramp.irr_blue=yirr_blue;
blue_ramp.laser_amp=blue_amp;
end