-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdynamics.py
134 lines (102 loc) · 3.65 KB
/
dynamics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import numpy as np
class FitzHughNagumo:
def __init__(self, args, A):
self.L = A - np.diag(np.sum(A, axis=1)) # Difussion matrix: x_j - x_i
param = args[args.dynamics]
self.a = param.a
self.b = param.b
self.c = param.c
self.epsilon = param.epsilon
self.k_in = np.sum(A, axis=1) # in-degree
def f(self, x, t):
node_num = x.shape[0] // 2
x1, x2 = x[:node_num], x[node_num:]
# x1
f_x1 = x1 - (x1 ** 3)/3 - x2
outer_x1 = self.epsilon * np.dot(self.L, 1/self.k_in) # epsilon * sum_j Aij * ((x1_j - x1_i) / k_in_i)
dx1dt = f_x1 + outer_x1
# x2
f_x2 = self.a + self.b * x1 + self.c * x2
outer_x2 = 0.0
dx2dt = f_x2 + outer_x2
if np.isnan(dx1dt).any():
print('nan during simulation!')
exit()
dxdt = np.concatenate([dx1dt, dx2dt], axis=0)
return dxdt
def g(self, x, t):
"""inherent noise"""
return np.diag([0.0] * x.shape[0])
class HindmarshRose:
def __init__(self, args, A):
self.A = A # Adjacency matrix
param = args[args.dynamics]
self.a = param.a
self.b = param.b
self.c = param.c
self.u = param.u
self.s = param.s
self.r = param.r
self.epsilon = param.epsilon
self.v = param.v
self.lam = param.lam
self.I = param.I
self.omega = param.omega
self.x0 = param.x0
def f(self, x, t):
node_num = x.shape[0] // 3
x1, x2, x3 = x[:node_num], x[node_num:2*node_num], x[2*node_num:]
mu_xj = 1 / (1 + np.exp(-self.lam * (x1 - self.omega)))
# x1
f_x1 = x2 - self.a * x1 ** 3 + self.b * x1 ** 2 - x3 + self.I
outer_x1 = self.epsilon * (self.v - x1) * np.dot(self.A, mu_xj)
dx1dt = f_x1 + outer_x1
# x2
f_x2 = self.c - self.u * x1 ** 2 - x2
outer_x2 = 0.0
dx2dt = f_x2 + outer_x2
# x3
f_x3 = self.r * (self.s * (x1 - self.x0) - x3)
outer_x3 = 0.0
dx3dt = f_x3 + outer_x3
if np.isnan(dx1dt).any():
print('nan during simulation!')
exit()
dxdt = np.concatenate([dx1dt, dx2dt, dx3dt], axis=0)
return dxdt
def g(self, x, t):
"""inherent noise"""
return np.diag([0.0] * x.shape[0])
class CoupledRossler:
def __init__(self, args, A):
self.L = A - np.diag(np.sum(A, axis=1)) # Difussion matrix: x_j - x_i
param = args[args.dynamics]
self.a = param.a
self.b = param.b
self.c = param.c
self.epsilon = param.epsilon
self.delta = param.delta
def f(self, x, t):
node_num = x.shape[0] // 3
x1, x2, x3 = x[:node_num], x[node_num:2*node_num], x[2*node_num:]
omega = np.random.normal(1, self.delta, size=node_num)
# x1
f_x1 = - omega * x2 - x3
outer_x1 = self.epsilon * np.dot(self.L, x1)
dx1dt = f_x1 + outer_x1
# x2
f_x2 = omega * x1 + self.a * x2
outer_x2 = 0.0
dx2dt = f_x2 + outer_x2
# x3
f_x3 = self.b + x3 * (x1 + self.c)
outer_x3 = 0.0
dx3dt = f_x3 + outer_x3
if np.isnan(dx1dt).any():
print('nan during simulation!')
exit()
dxdt = np.concatenate([dx1dt, dx2dt, dx3dt], axis=0)
return dxdt
def g(self, x, t):
"""inherent noise"""
return np.diag([0.0] * x.shape[0])