-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlstm.py
170 lines (144 loc) · 4.99 KB
/
lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import os
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.metrics import f1_score, classification_report
import tensorflow as tf
from tensorflow.keras.utils import pad_sequences
import tensorflow.keras.backend as K
from tensorflow.keras.preprocessing.text import Tokenizer
from data import load_data
def build_tokenizer(texts):
tokenizer = Tokenizer(char_level=True, lower=False)
tokenizer.fit_on_texts(texts)
return tokenizer
def label_seq(seq, labels, tokenizer):
new_seq = []
label_seq = []
for i, c in enumerate(seq[:-1]):
if i in labels:
continue
new_seq.append(c)
if i + 1 in labels:
next_char = tokenizer.index_word[seq[i + 1]]
if next_char == "'":
label_seq.append(1)
elif next_char == '"':
label_seq.append(2)
else:
raise ValueError("Noooo!")
else:
label_seq.append(0)
new_seq.append(seq[-1])
label_seq.append(0)
return new_seq, label_seq
def create_tensors(sequences, labels, tokenizer, maxlen):
seq_labels = [label_seq(s, l, tokenizer) for s, l in zip(sequences, labels)]
sequences = [s for s, l in seq_labels]
labels = [l for s, l in seq_labels]
weights = [[1] * len(l) for l in labels]
padded_sequences = pad_sequences(sequences, padding="post", maxlen=maxlen)
padded_labels = pad_sequences(labels, padding="post", maxlen=maxlen)
weights = pad_sequences(weights, padding="post", maxlen=maxlen)
weights[padded_labels > 0] = 100
return padded_sequences, padded_labels, weights
def to_tf_dataset(inputs, outputs, batch_size):
dataset = tf.data.Dataset.from_tensor_slices((inputs, outputs))
dataset = dataset.map(lambda x, y: (x, tf.expand_dims(tf.cast(y, "float32"), 1)))
dataset = dataset.batch(batch_size)
return dataset
def train_model(
cfg, train_inputs, train_outputs, train_sample_weights, test_dataset, n_chars
):
model = tf.keras.Sequential(
[
tf.keras.layers.Input(shape=(cfg.LSTM.MAX_LEN,)),
tf.keras.layers.Embedding(
n_chars,
cfg.LSTM.HIDDEN_DIM,
name="char_emb",
input_length=cfg.LSTM.MAX_LEN,
),
tf.keras.layers.Bidirectional(
tf.keras.layers.LSTM(
cfg.LSTM.HIDDEN_DIM,
name="encoder",
input_shape=(n_chars, cfg.LSTM.HIDDEN_DIM),
return_sequences=True,
)
),
tf.keras.layers.Bidirectional(
tf.keras.layers.LSTM(
cfg.LSTM.HIDDEN_DIM, return_sequences=True, name="decoder"
)
),
tf.keras.layers.TimeDistributed(
tf.keras.layers.Dense(3, activation="softmax", name="predictor")
),
],
name="char_binary_lstm",
)
optimizer = tf.keras.optimizers.Adam()
early_stopping = tf.keras.callbacks.EarlyStopping(
patience=5,
restore_best_weights=True,
)
save_ckpt = tf.keras.callbacks.ModelCheckpoint(
os.path.join(cfg.OUTPUT, "char_lstm"), save_best_only=True
)
csv_logger = tf.keras.callbacks.CSVLogger(os.path.join(cfg.OUTPUT, "training.log"))
model.compile(
loss=tf.keras.losses.SparseCategoricalCrossentropy(),
optimizer=optimizer,
sample_weight_mode="temporal",
)
model.summary()
model.fit(
train_inputs,
train_outputs,
validation_data=test_dataset,
epochs=cfg.LSTM.SOLVER.EPOCHS,
sample_weight=np.expand_dims(train_sample_weights, -1),
callbacks=[early_stopping, save_ckpt, csv_logger],
)
return model
def evaluate_model(model, test_dataset):
y_pred = model.predict(test_dataset)
y_pred = y_pred.argmax(-1)
y_true = test_dataset.map(lambda x, y: y)
y_true = np.concatenate([x for x in y_true], axis=0)
y_true = y_true.reshape(-1, 1).squeeze()
y_pred = y_pred.reshape(-1, 1).squeeze()
print(classification_report(y_true, y_pred))
def main(cfg):
sentences, labels = load_data(cfg.INPUT)
tokenizer = build_tokenizer(sentences)
sequences = tokenizer.texts_to_sequences(sentences)
inputs, outputs, sample_weights = create_tensors(
sequences, labels, tokenizer, cfg.LSTM.MAX_LEN
)
(
train_inputs,
test_inputs,
train_outputs,
test_outputs,
train_sample_weights,
_,
) = train_test_split(
inputs,
outputs,
sample_weights,
test_size=cfg.TEST_SPLIT,
stratify=outputs.max(axis=-1),
)
test_dataset = to_tf_dataset(
test_inputs, test_outputs, batch_size=cfg.LSTM.SOLVER.BATCH_SIZE
)
model = train_model(
cfg,
train_inputs,
train_outputs,
train_sample_weights,
test_dataset,
len(tokenizer.index_word) + 1,
)
evaluate_model(model, test_dataset)