-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
59 lines (46 loc) · 1.72 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import torch
import torch.nn as nn
from torch.nn import functional as F
import math
class ConvNet(nn.Module):
"""LeNet++ as described in the Center Loss paper."""
def __init__(self, num_classes):
super(ConvNet, self).__init__()
self.conv1_1 = nn.Conv2d(1, 32, 5, stride=1, padding=2)
self.prelu1_1 = nn.PReLU()
self.conv1_2 = nn.Conv2d(32, 32, 5, stride=1, padding=2)
self.prelu1_2 = nn.PReLU()
self.conv2_1 = nn.Conv2d(32, 64, 5, stride=1, padding=2)
self.prelu2_1 = nn.PReLU()
self.conv2_2 = nn.Conv2d(64, 64, 5, stride=1, padding=2)
self.prelu2_2 = nn.PReLU()
self.conv3_1 = nn.Conv2d(64, 128, 5, stride=1, padding=2)
self.prelu3_1 = nn.PReLU()
self.conv3_2 = nn.Conv2d(128, 128, 5, stride=1, padding=2)
self.prelu3_2 = nn.PReLU()
self.fc1 = nn.Linear(128*3*3, 2)
self.prelu_fc1 = nn.PReLU()
self.fc2 = nn.Linear(2, num_classes)
def forward(self, x):
x = self.prelu1_1(self.conv1_1(x))
x = self.prelu1_2(self.conv1_2(x))
x = F.max_pool2d(x, 2)
x = self.prelu2_1(self.conv2_1(x))
x = self.prelu2_2(self.conv2_2(x))
x = F.max_pool2d(x, 2)
x = self.prelu3_1(self.conv3_1(x))
x = self.prelu3_2(self.conv3_2(x))
x = F.max_pool2d(x, 2)
x = x.view(-1, 128*3*3)
x = self.prelu_fc1(self.fc1(x))
y = self.fc2(x)
return x, y
__factory = {
'cnn': ConvNet,
}
def create(name, num_classes):
if name not in __factory.keys():
raise KeyError("Unknown model: {}".format(name))
return __factory[name](num_classes)
if __name__ == '__main__':
pass