-
Notifications
You must be signed in to change notification settings - Fork 488
/
Copy pathretina_r152v1b_fpn_1x.py
259 lines (199 loc) · 6.92 KB
/
retina_r152v1b_fpn_1x.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
from models.retinanet.builder import RetinaNet as Detector
from models.retinanet.builder import MSRAResNetV1bFPN as Backbone
from models.retinanet.builder import RetinaNetNeck as Neck
from models.retinanet.builder import RetinaNetHead as RpnHead
from mxnext.complicate import normalizer_factory
def get_config(is_train):
class General:
log_frequency = 10
name = __name__.rsplit("/")[-1].rsplit(".")[-1]
batch_image = 2 if is_train else 1
fp16 = False
class KvstoreParam:
kvstore = "nccl"
batch_image = General.batch_image
gpus = [0, 1, 2, 3, 4, 5, 6, 7]
fp16 = General.fp16
class NormalizeParam:
normalizer = normalizer_factory(type="fixbn")
class BackboneParam:
fp16 = General.fp16
normalizer = NormalizeParam.normalizer
depth = 152
class NeckParam:
fp16 = General.fp16
normalizer = NormalizeParam.normalizer
class RpnParam:
num_class = 1 + 80
fp16 = General.fp16
normalizer = NormalizeParam.normalizer
batch_image = General.batch_image
class anchor_generate:
scale = (4 * 2 ** 0, 4 * 2 ** (1.0 / 3.0), 4 * 2 ** (2.0 / 3.0))
ratio = (0.5, 1.0, 2.0)
stride = (8, 16, 32, 64, 128)
image_anchor = None
class head:
conv_channel = 256
mean = None
std = None
class proposal:
pre_nms_top_n = 1000
post_nms_top_n = None
nms_thr = None
min_bbox_side = None
min_det_score = 0.05 # filter score in network
class subsample_proposal:
proposal_wo_gt = None
image_roi = None
fg_fraction = None
fg_thr = None
bg_thr_hi = None
bg_thr_lo = None
class bbox_target:
num_reg_class = None
class_agnostic = None
weight = None
mean = None
std = None
class focal_loss:
alpha = 0.25
gamma = 2.0
class BboxParam:
fp16 = General.fp16
normalizer = NormalizeParam.normalizer
num_class = None
image_roi = None
batch_image = None
class regress_target:
class_agnostic = None
mean = None
std = None
class RoiParam:
fp16 = General.fp16
normalizer = NormalizeParam.normalizer
out_size = None
stride = None
class DatasetParam:
if is_train:
image_set = ("coco_train2017", )
else:
image_set = ("coco_val2017", )
backbone = Backbone(BackboneParam)
neck = Neck(NeckParam)
rpn_head = RpnHead(RpnParam)
detector = Detector()
if is_train:
train_sym = detector.get_train_symbol(backbone, neck, rpn_head)
test_sym = None
else:
train_sym = None
test_sym = detector.get_test_symbol(backbone, neck, rpn_head)
class ModelParam:
train_symbol = train_sym
test_symbol = test_sym
from_scratch = False
random = True
memonger = False
memonger_until = "stage3_unit21_plus"
class pretrain:
prefix = "pretrain_model/resnet%s_v1b" % BackboneParam.depth
epoch = 0
fixed_param = ["conv0", "stage1", "gamma", "beta"]
class OptimizeParam:
class optimizer:
type = "sgd"
lr = 0.005 / 8 * len(KvstoreParam.gpus) * KvstoreParam.batch_image
momentum = 0.9
wd = 0.0001
clip_gradient = None
class schedule:
begin_epoch = 0
end_epoch = 6
lr_iter = [60000 * 16 // (len(KvstoreParam.gpus) * KvstoreParam.batch_image),
80000 * 16 // (len(KvstoreParam.gpus) * KvstoreParam.batch_image)]
class warmup:
type = "gradual"
lr = 0.005 / 8 * len(KvstoreParam.gpus) * KvstoreParam.batch_image / 3
iter = 1000
class TestParam:
min_det_score = 0 # filter appended boxes
max_det_per_image = 100
process_roidb = lambda x: x
process_output = lambda x, y: x
class model:
prefix = "experiments/{}/checkpoint".format(General.name)
epoch = OptimizeParam.schedule.end_epoch
class nms:
type = "nms"
thr = 0.5
class coco:
annotation = "data/coco/annotations/instances_minival2014.json"
# data processing
class NormParam:
mean = tuple(i * 255 for i in (0.485, 0.456, 0.406)) # RGB order
std = tuple(i * 255 for i in (0.229, 0.224, 0.225))
class ResizeParam:
short = 800
long = 1333
class PadParam:
short = 800
long = 1333
max_num_gt = 100
class AnchorTarget2DParam:
def __init__(self):
self.generate = self._generate()
class _generate:
def __init__(self):
self.short = (100, 50, 25, 13, 7)
self.long = (167, 84, 42, 21, 11)
self.stride = (8, 16, 32, 64, 128)
scales = (4 * 2 ** 0, 4 * 2 ** (1.0 / 3.0), 4 * 2 ** (2.0 / 3.0))
aspects = (0.5, 1.0, 2.0)
class assign:
allowed_border = 9999
pos_thr = 0.5
neg_thr = 0.4
min_pos_thr = 0.0
class sample:
image_anchor = None
pos_fraction = None
class RenameParam:
mapping = dict(image="data")
from core.detection_input import ReadRoiRecord, Resize2DImageBbox, \
ConvertImageFromHwcToChw, Flip2DImageBbox, Pad2DImageBbox, \
RenameRecord
from models.retinanet.input import PyramidAnchorTarget2D, Norm2DImage
if is_train:
transform = [
ReadRoiRecord(None),
Norm2DImage(NormParam),
Resize2DImageBbox(ResizeParam),
Flip2DImageBbox(),
Pad2DImageBbox(PadParam),
ConvertImageFromHwcToChw(),
PyramidAnchorTarget2D(AnchorTarget2DParam()),
RenameRecord(RenameParam.mapping)
]
data_name = ["data"]
label_name = ["rpn_cls_label", "rpn_reg_target", "rpn_reg_weight"]
else:
transform = [
ReadRoiRecord(None),
Norm2DImage(NormParam),
Resize2DImageBbox(ResizeParam),
ConvertImageFromHwcToChw(),
RenameRecord(RenameParam.mapping)
]
data_name = ["data", "im_info", "im_id", "rec_id"]
label_name = []
from models.retinanet import metric
rpn_acc_metric = metric.FGAccMetric(
"FGAcc",
["cls_loss_output"],
["rpn_cls_label"]
)
metric_list = [rpn_acc_metric]
return General, KvstoreParam, RpnParam, RoiParam, BboxParam, DatasetParam, \
ModelParam, OptimizeParam, TestParam, \
transform, data_name, label_name, metric_list