-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
executable file
·181 lines (155 loc) · 5.22 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
#!/usr/bin/env python3
import argparse
import shutil
from functools import partial
from pathlib import Path
import numpy as np
from python_tools.generic import namespace_as_string
from python_tools.ml import metrics
from python_tools.ml.default.neural_models import EnsembleModel, MLPModel
from python_tools.ml.default.transformations import (
DefaultTransformations,
revert_transform,
set_transform,
)
from python_tools.ml.evaluator import evaluator
from dataloader import BP4D_PLUS, DISFA, MNIST
def train(partitions: dict[str, DISFA], folder: Path, args: argparse.Namespace) -> None:
params = {"interval": True, "metric_max": True, "y_names": np.array(["intensity"])}
model = MLPModel(device="cuda", **params)
grid_search = {
"epochs": [5000],
"early_stop": [50],
"lr": [0.01, 0.001, 0.0001, 0.00001],
"dropout": [0.0, 0.5],
"layers": [0, 1, 2, 3],
"activation": [{"name": "ReLU"}],
"attenuation": [""],
"sample_weight": [True],
}
if args.method == "gp":
grid_search["final_activation"] = [
{"name": "gpvfe", "embedding_size": 2, "inducing_points": 2000}
]
else:
grid_search["final_activation"] = [{"name": "linear"}]
if args.method == "attenuation":
grid_search["attenuation"] = ["gaussian"]
elif args.method == "dropout":
grid_search["dropout"] = [0.5]
elif args.method == "ensemble":
model = EnsembleModel(device="cuda", **params)
for key in ("layers", "activation", "dropout"):
grid_search[f"model_{key}"] = grid_search.pop(key)
model.parameters.pop(key)
model.parameters.update(grid_search)
models, parameters, model_transform = model.get_models()
apply_transformation = partial(
combine_transformations, model_transform=model_transform
)
transform = DefaultTransformations(**params)
transforms = tuple([{}] * len(partitions))
kwargs = {
"parallel": "local",
"n_workers": args.workers,
"workers": args.workers,
}
print(folder)
evaluator(
models=models,
partitions=partitions,
parameters=parameters,
folder=folder,
metric_fun=metrics.interval_metrics,
metric="ccc",
metric_max=params["metric_max"],
learn_transform=transform.define_transform,
apply_transform=apply_transformation,
revert_transform=revert_transform,
transform_parameter=transforms,
**kwargs,
)
def combine_transformations(data, transform, model_transform=None):
data = set_transform(data, transform)
data.add_transform(model_transform, optimizable=True)
return data
if __name__ == "__main__":
# argparse
parser = argparse.ArgumentParser()
au_flags = [
"1",
"2",
"4",
"5",
"6",
"9",
"10",
"12",
"14",
"15",
"17",
"20",
"25",
"26",
]
for name in au_flags + ["transfer"]:
parser.add_argument(
f"--{name}", action="store_const", const=True, default=False
)
parser.add_argument(
"--method", choices=["dropout", "attenuation", "gpvfe", "ensemble"]
)
parser.add_argument("--dataset", choices=["disfa", "bp4d_plus", "mnist", "mnisti"])
parser.add_argument("--workers", type=int, default=4)
args = parser.parse_args()
if args.transfer:
assert args.dataset == "bp4d_plus"
arg_aus = []
for au in au_flags:
if getattr(args, au):
arg_aus.append(int(au))
# choose dataloader
folds = 1
aus = [1, 2, 4, 5, 6, 9, 12, 15, 17, 20, 25, 26]
def backend(au, fold, name):
return DISFA(au, ifold=fold, name=name).get_loader()
if args.dataset == "bp4d_plus":
aus = [6, 10, 12, 14, 17]
def backend(au, fold, name):
return BP4D_PLUS(au, ifold=fold, name=name).get_loader()
elif args.dataset.startswith("mnist"):
aus = [6]
def backend(au, fold, name):
return MNIST(
au, ifold=fold, name=name, imbalance=args.dataset == "mnisti"
).get_loader()
if args.transfer:
aus = [6, 12, 17]
assert args.dataset == "bp4d_plus"
def backend(au, fold, name):
if name == "test":
return DISFA(au, ifold=fold, name=name).get_loader()
return BP4D_PLUS(au, ifold=fold, name=name).get_loader()
# run on subset of AUs
if arg_aus:
aus = [au for au in aus if au in arg_aus]
for au in aus:
print("AU", au)
folder = Path(namespace_as_string(args, exclude=("workers",)) + f"_au={au}")
if args.transfer:
# copy BP4D+ models
args.transfer = False
folder_bp4d_plus = Path(
namespace_as_string(args, exclude=("workers",)) + f"_au={au}"
)
args.transfer = True
if not folder.is_dir():
shutil.copytree(folder_bp4d_plus, folder)
data = {
i: {
name: backend(au, i, name)
for name in ("training", "validation", "test")
}
for i in range(folds)
}
train(data, folder, args)