-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_generator_plus.py
63 lines (50 loc) · 2.51 KB
/
train_generator_plus.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import h5py
from keras.models import Sequential
from keras.layers.core import Dense
from dlgo.agent.predict import DeepLearningAgent
from dlgo.data.parallel_processor import GoDataProcessor
from dlgo.encoders.sevenplane import SevenPlaneEncoder
from dlgo.networks.large import layers
from keras.callbacks import ModelCheckpoint, TensorBoard
go_board_rows, go_board_cols = 19, 19
nb_classes = go_board_rows * go_board_cols
epochs = 20
num_game = 5000
batch_size = 256
encoder = SevenPlaneEncoder((go_board_rows, go_board_cols))
processor = GoDataProcessor(encoder=encoder.name())
input_channels = encoder.num_planes
input_shape = (input_channels, go_board_rows, go_board_cols)
generator = processor.load_go_data('train', num_game, use_generator=True)
test_generator = processor.load_go_data('test', int(num_game / 4), use_generator=True)
model = Sequential()
network_layers = layers(input_shape)
for layer in network_layers:
model.add(layer)
model.add(Dense(nb_classes, activation='softmax'))
model.summary()
model.compile(loss='categorical_crossentropy', optimizer='adadelta', metrics=['accuracy'])
filepath = "./checkpoints/large_model_best.h5"
checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=1, save_best_only=True, mode='max')
tensorboard = TensorBoard(log_dir='./logs', histogram_freq=0, batch_size=batch_size, write_graph=True,
write_grads=True, write_images=True, embeddings_freq=0,
embeddings_layer_names=None, embeddings_metadata=None, embeddings_data=None,
update_freq='batch')
callbacks_list = [checkpoint, tensorboard]
model.fit_generator(generator=generator.generate(batch_size, nb_classes),
epochs=epochs,
steps_per_epoch=generator.get_num_samples() / batch_size,
validation_data=test_generator.generate(batch_size, nb_classes),
validation_steps=test_generator.get_num_samples() / batch_size,
callbacks=callbacks_list
)
model.evaluate_generator(generator=test_generator.generate(batch_size, nb_classes),
steps=test_generator.get_num_samples() / batch_size)
# weight_file = './agents/weights.hd5'
# model.save_weights(weight_file, overwrite=True)
# model_file = './agents/model.yml'
# with open(model_file, 'w') as yml:
# model_yaml = model.to_yaml()
# yml.write(model_yaml)
deep_learning_bot = DeepLearningAgent(model, encoder)
deep_learning_bot.serialize(h5py.File("./agents/deep_bot.h5"))