forked from datong-new/Point-GNN.pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkitty_dataset.py
288 lines (254 loc) · 12.7 KB
/
kitty_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
import numpy as np
import torch
from models import preprocess
from models.box_encoding import get_box_decoding_fn, get_box_encoding_fn,\
get_encoding_len
from dataset.kitti_dataset import KittiDataset
from models.graph_gen import get_graph_generate_fn
from multiprocessing import Pool, Queue, Process
import os
import argparse
from util.config_util import save_config, save_train_config, \
load_train_config, load_config
def fetch_data(dataset, frame_idx, train_config, config):
aug_fn = preprocess.get_data_aug(train_config['data_aug_configs'])
BOX_ENCODING_LEN = get_encoding_len(config['box_encoding_method'])
box_encoding_fn = get_box_encoding_fn(config['box_encoding_method'])
box_decoding_fn = get_box_decoding_fn(config['box_encoding_method'])
graph_generate_fn= get_graph_generate_fn(config['graph_gen_method'])
cam_rgb_points = dataset.get_cam_points_in_image_with_rgb(frame_idx,
config['downsample_by_voxel_size'])
box_label_list = dataset.get_label(frame_idx)
if 'crop_aug' in train_config:
cam_rgb_points, box_label_list = sampler.crop_aug(cam_rgb_points,
box_label_list,
sample_rate=train_config['crop_aug']['sample_rate'],
parser_kwargs=train_config['crop_aug']['parser_kwargs'])
cam_rgb_points, box_label_list = aug_fn(cam_rgb_points, box_label_list)
(vertex_coord_list, keypoint_indices_list, edges_list) = \
graph_generate_fn(cam_rgb_points.xyz, **config['graph_gen_kwargs'])
if config['input_features'] == 'irgb':
input_v = cam_rgb_points.attr
elif config['input_features'] == '0rgb':
input_v = np.hstack([np.zeros((cam_rgb_points.attr.shape[0], 1)),
cam_rgb_points.attr[:, 1:]])
elif config['input_features'] == '0000':
input_v = np.zeros_like(cam_rgb_points.attr)
elif config['input_features'] == 'i000':
input_v = np.hstack([cam_rgb_points.attr[:, [0]],
np.zeros((cam_rgb_points.attr.shape[0], 3))])
elif config['input_features'] == 'i':
input_v = cam_rgb_points.attr[:, [0]]
elif config['input_features'] == '0':
input_v = np.zeros((cam_rgb_points.attr.shape[0], 1))
last_layer_graph_level = config['model_kwargs'][
'layer_configs'][-1]['graph_level']
last_layer_points_xyz = vertex_coord_list[last_layer_graph_level+1]
if config['label_method'] == 'yaw':
cls_labels, boxes_3d, valid_boxes, label_map = \
dataset.assign_classaware_label_to_points(box_label_list,
last_layer_points_xyz,
expend_factor=train_config.get('expend_factor', (1.0, 1.0, 1.0)))
if config['label_method'] == 'Car':
cls_labels, boxes_3d, valid_boxes, label_map = \
dataset.assign_classaware_car_label_to_points(box_label_list,
last_layer_points_xyz,
expend_factor=train_config.get('expend_factor', (1.0, 1.0, 1.0)))
if config['label_method'] == 'Pedestrian_and_Cyclist':
(cls_labels, boxes_3d, valid_boxes, label_map) =\
dataset.assign_classaware_ped_and_cyc_label_to_points(
box_label_list, last_layer_points_xyz,
expend_factor=train_config.get('expend_factor', (1.0, 1.0, 1.0)))
encoded_boxes = box_encoding_fn(cls_labels, last_layer_points_xyz,
boxes_3d, label_map)
input_v = input_v.astype(np.float32)
vertex_coord_list = [p.astype(np.float32) for p in vertex_coord_list]
keypoint_indices_list = [e.astype(np.int32) for e in keypoint_indices_list]
edges_list = [e.astype(np.int32) for e in edges_list]
cls_labels = cls_labels.astype(np.int32)
encoded_boxes = encoded_boxes.astype(np.float32)
valid_boxes = valid_boxes.astype(np.float32)
return(input_v, vertex_coord_list, keypoint_indices_list, edges_list,
cls_labels, encoded_boxes, valid_boxes)
def batch_data(batch_list):
N_input_v, N_vertex_coord_list, N_keypoint_indices_list, N_edges_list,\
N_cls_labels, N_encoded_boxes, N_valid_boxes = zip(*batch_list)
batch_size = len(batch_list)
level_num = len(N_vertex_coord_list[0])
batched_keypoint_indices_list = []
batched_edges_list = []
for level_idx in range(level_num-1):
centers = []
vertices = []
point_counter = 0
center_counter = 0
for batch_idx in range(batch_size):
centers.append(
N_keypoint_indices_list[batch_idx][level_idx]+point_counter)
vertices.append(np.hstack(
[N_edges_list[batch_idx][level_idx][:,[0]]+point_counter,
N_edges_list[batch_idx][level_idx][:,[1]]+center_counter]))
point_counter += N_vertex_coord_list[batch_idx][level_idx].shape[0]
center_counter += \
N_keypoint_indices_list[batch_idx][level_idx].shape[0]
batched_keypoint_indices_list.append(np.vstack(centers))
batched_edges_list.append(np.vstack(vertices))
batched_vertex_coord_list = []
for level_idx in range(level_num):
points = []
counter = 0
for batch_idx in range(batch_size):
points.append(N_vertex_coord_list[batch_idx][level_idx])
batched_vertex_coord_list.append(np.vstack(points))
batched_input_v = np.vstack(N_input_v)
batched_cls_labels = np.vstack(N_cls_labels)
batched_encoded_boxes = np.vstack(N_encoded_boxes)
batched_valid_boxes = np.vstack(N_valid_boxes)
batched_input_v = torch.from_numpy(batched_input_v)
batched_vertex_coord_list = [torch.from_numpy(item) for item in batched_vertex_coord_list]
batched_keypoint_indices_list = [torch.from_numpy(item).long() for item in batched_keypoint_indices_list]
batched_edges_list = [torch.from_numpy(item).long() for item in batched_edges_list]
batched_cls_labels = torch.from_numpy(batched_cls_labels)
batched_encoded_boxes = torch.from_numpy(batched_encoded_boxes)
batched_valid_boxes = torch.from_numpy(batched_valid_boxes)
return (batched_input_v, batched_vertex_coord_list,
batched_keypoint_indices_list, batched_edges_list, batched_cls_labels,
batched_encoded_boxes, batched_valid_boxes)
class DataProvider(object):
"""This class provides input data to training.
It has option to load dataset in memory so that preprocessing does not
repeat every time.
Note, if there is randomness inside graph creation, dataset should be
reloaded.
"""
def __init__(self, dataset, train_config, config, async_load_rate=1.0, result_pool_limit=10000):
if 'NUM_TEST_SAMPLE' not in train_config:
self.NUM_TEST_SAMPLE = dataset.num_files
else:
if train_config['NUM_TEST_SAMPLE'] < 0:
self.NUM_TEST_SAMPLE = dataset.num_files
else:
self.NUM_TEST_SAMPLE = train_config['NUM_TEST_SAMPLE']
load_dataset_to_mem=train_config['load_dataset_to_mem']
load_dataset_every_N_time=train_config['load_dataset_every_N_time']
capacity=train_config['capacity']
num_workers=train_config['num_load_dataset_workers']
preload_list=list(range(self.NUM_TEST_SAMPLE))
self.dataset = dataset
self.train_config = train_config
self.config = config
self._fetch_data = fetch_data
self._batch_data = batch_data
self._buffer = {}
self._results = {}
self._load_dataset_to_mem = load_dataset_to_mem
self._load_every_N_time = load_dataset_every_N_time
self._capacity = capacity
self._worker_pool = Pool(processes=num_workers)
self._preload_list = preload_list
self._async_load_rate = async_load_rate
self._result_pool_limit = result_pool_limit
#if len(self._preload_list) > 0:
# self.preload(self._preload_list)
def preload(self, frame_idx_list):
"""async load dataset into memory."""
for frame_idx in frame_idx_list:
result = self._worker_pool.apply_async(
self._fetch_data, (self.dataset, frame_idx, self.train_config, self.config))
self._results[frame_idx] = result
def async_load(self, frame_idx):
"""async load a data into memory"""
if frame_idx in self._results:
data = self._results[frame_idx].get()
del self._results[frame_idx]
else:
data = self._fetch_data(self.dataset, frame_idx, self.train_config, self.config)
if np.random.random() < self._async_load_rate:
if len(self._results) < self._result_pool_limit:
result = self._worker_pool.apply_async(
self._fetch_data, (self.dataset, frame_idx, self.train_config, self.config))
self._results[frame_idx] = result
return data
def provide(self, frame_idx):
if self._load_dataset_to_mem:
if self._load_every_N_time >= 1:
extend_frame_idx = frame_idx+np.random.choice(
self._capacity)*self.NUM_TEST_SAMPLE
if extend_frame_idx not in self._buffer:
data = self.async_load(frame_idx)
self._buffer[extend_frame_idx] = (data, 0)
data, ctr = self._buffer[extend_frame_idx]
if ctr == self._load_every_N_time:
data = self.async_load(frame_idx)
self._buffer[extend_frame_idx] = (data, 0)
data, ctr = self._buffer[extend_frame_idx]
self._buffer[extend_frame_idx] = (data, ctr+1)
return data
else:
# do not buffer
return self.async_load(frame_idx)
else:
return self._fetch_data(self.dataset, frame_idx, self.train_config, self.config)
def provide_batch(self, frame_idx_list):
batch_list = []
for frame_idx in frame_idx_list:
batch_list.append(self.provide(frame_idx))
return self._batch_data(batch_list)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Training of PointGNN')
parser.add_argument('train_config_path', type=str,
help='Path to train_config')
parser.add_argument('config_path', type=str,
help='Path to config')
parser.add_argument('--dataset_root_dir', type=str, default='../dataset/kitti/',
help='Path to KITTI dataset. Default="../dataset/kitti/"')
parser.add_argument('--dataset_split_file', type=str,
default='',
help='Path to KITTI dataset split file.'
'Default="DATASET_ROOT_DIR/3DOP_splits'
'/train_config["train_dataset"]"')
args = parser.parse_args()
train_config = load_train_config(args.train_config_path)
DATASET_DIR = args.dataset_root_dir
config_complete = load_config(args.config_path)
if 'train' in config_complete:
config = config_complete['train']
else:
config = config_complete
if args.dataset_split_file == '':
DATASET_SPLIT_FILE = os.path.join(DATASET_DIR,
'./3DOP_splits/'+train_config['train_dataset'])
else:
DATASET_SPLIT_FILE = args.dataset_split_file
# input function ==============================================================
dataset = KittiDataset(
os.path.join(DATASET_DIR, 'image/training/image_2'),
os.path.join(DATASET_DIR, 'velodyne/training/velodyne/'),
os.path.join(DATASET_DIR, 'calib/training/calib/'),
os.path.join(DATASET_DIR, 'labels/training/label_2'),
DATASET_SPLIT_FILE,
num_classes=config['num_classes'])
data_provider = DataProvider(dataset, train_config, config)
input_v, vertex_coord_list, keypoint_indices_list, edges_list, \
cls_labels, encoded_boxes, valid_boxes = data_provider.provide_batch([1545, 1546])
#batch_list = []
#batch_list += [fetch_data(dataset, 1545, train_config, config)]
#batch_list += [fetch_data(dataset, 1546, train_config, config)]
#input_v, vertex_coord_list, keypoint_indices_list, edges_list, \
# cls_labels, encoded_boxes, valid_boxes = batch_data(batch_list)
print(f"input_v: {input_v.shape}")
for i, vertex_coord in enumerate(vertex_coord_list):
print(f"vertex_coord: {i}: {vertex_coord.shape}")
for i, indices in enumerate(keypoint_indices_list):
print(f"indices: {i}: {indices.shape}")
print(indices)
for i, edge in enumerate(edges_list):
print(f"edge: {i}: {edge.shape}")
print(edge)
#for item in edge:
# if item[0]==item[1]: print(item)
print(f"cls_labels:{cls_labels.shape}")
print(f"encoded_boxes: {encoded_boxes.shape}")
print(f"valid_boxes: {valid_boxes.shape}")
print(valid_boxes)
print(f"max: {valid_boxes.max()}, min:{valid_boxes.min()}, sum: {valid_boxes.sum()}")