-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathutils.py
141 lines (102 loc) · 4 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import os
from PIL import Image
import torch
import torchvision
import torchvision.transforms as transforms
def _normalizer(denormalize=False):
MEAN = [0.485, 0.456, 0.406]
STD = [0.229, 0.224, 0.225]
if denormalize:
MEAN = [-mean/std for mean, std in zip(MEAN, STD)]
STD = [1/std for std in STD]
return transforms.Normalize(mean=MEAN, std=STD)
def _transformer(imsize=None, cropsize=None, cencrop=False):
transformer = []
if imsize:
transformer.append(transforms.Resize(imsize))
if cropsize:
if cencrop:
transformer.append(transforms.CenterCrop(cropsize))
else:
transformer.append(transforms.RandomCrop(cropsize))
transformer.append(transforms.ToTensor())
transformer.append(_normalizer())
return transforms.Compose(transformer)
def imload(path, imsize=None, cropsize=None, cencrop=False):
transformer = _transformer(imsize=imsize, cropsize=cropsize, cencrop=cencrop)
return transformer(Image.open(path).convert("RGB")).unsqueeze(0)
def maskload(path):
mask = Image.open(path).convert('L')
return transforms.functional.to_tensor(mask).unsqueeze(0)
def imsave(tensor, path):
denormalize = _normalizer(denormalize=True)
if tensor.is_cuda:
tensor = tensor.cpu()
tensor = torchvision.utils.make_grid(tensor)
torchvision.utils.save_image(denormalize(tensor).clamp_(0.0, 1.0), path)
return None
def imshow(tensor):
denormalize = _normalizer(denormalize=True)
if tensor.is_cuda:
tensor = tensor.cpu()
tensor = torchvision.utils.make_grid(denormalize(tensor.squeeze()))
image = transforms.functional.to_pil_image(tensor.clamp_(0.0, 1.0))
return image
class Image_Folder(torch.utils.data.Dataset):
def __init__(self, root_path, imsize, cropsize, cencrop):
super(Image_Folder, self).__init__()
self.root_path = root_path
self.file_names = sorted(os.listdir(self.root_path))
self.transformer = _transformer(imsize, cropsize, cencrop)
def __len__(self):
return len(self.file_names)
def __getitem__(self, index):
image = Image.open(os.path.join(self.root_path + self.file_names[index])).convert("RGB")
return self.transformer(image)
def lastest_average_value(values, length=100):
if len(values) < length:
length = len(values)
return sum(values[-length:])/length
def mean_covsqrt(f, inverse=False, eps=1e-10):
c, h, w = f.size()
f_mean = torch.mean(f.view(c, h*w), dim=1, keepdim=True)
f_zeromean = f.view(c, h*w) - f_mean
f_cov = torch.mm(f_zeromean, f_zeromean.t())
u, s, v = torch.svd(f_cov)
k = c
for i in range(c):
if s[i] < eps:
k = i
break
if inverse:
p = -0.5
else:
p = 0.5
f_covsqrt = torch.mm(torch.mm(v[:, 0:k], torch.diag(s[0:k].pow(p))), v[:, 0:k].t())
return f_mean, f_covsqrt
def whitening(f):
c, h, w = f.size()
f_mean, f_inv_covsqrt = mean_covsqrt(f, inverse=True)
whiten_f = torch.mm(f_inv_covsqrt, f.view(c, h*w) - f_mean)
return whiten_f.view(c, h, w)
def coloring(f, t):
f_c, f_h, f_w = f.size()
t_c, t_h, t_w = t.size()
t_mean, t_covsqrt = mean_covsqrt(t)
colored_f = torch.mm(t_covsqrt, f.view(f_c, f_h*f_w)) + t_mean
return colored_f.view(f_c, f_h, f_w)
def batch_wct(source, target):
whiten_source = batch_whitening(source)
return batch_coloring(whiten_source, target)
def batch_whitening(f):
b, c, h, w = f.size()
whiten_f = torch.Tensor(b, c, h, w).type_as(f)
for i, f_ in enumerate(torch.split(f, 1)):
whiten_f[i] = whitening(f_.squeeze())
return whiten_f
def batch_coloring(f, t):
b, c, h, w = f.size()
colored_f = torch.Tensor(b, c, h, w).type_as(f)
for i, (f_, t_) in enumerate(zip(torch.split(f, 1), torch.split(t, 1))):
colored_f[i] = coloring(f_.squeeze(), t_.squeeze())
return colored_f