-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathiraincalc.py
executable file
·207 lines (189 loc) · 8.66 KB
/
iraincalc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
#!/usr/bin/env python3
"""
SPDX-License-Identifier: GPL-2.0-or-later
Christian Chwala (IMK) <[email protected]>
Tzvetomir Stoyanov <[email protected]>
"""
import argparse, string, sys
import pandas as pd
import xarray as xr
import csv
import pycomlink as pycml
from datetime import datetime
from tqdm import tqdm
description="Calculate rainfall information from commercial microwave link (CML) data"
linkColumns = ['LonA', 'LonB', 'latA', 'latB',
'CarTer_Index', 'CarTer_rxFrequency', 'CarTer_txFrequency']
signalColumns = ['CarTer_Index', 'tx', 'rx', 't', 'date']
outPrefix='wet'
rainThreshold=0.8
class rainCalc:
def __init__(self, links, signals, outName, outAll):
self.load_links(links)
self.load_signals(signals)
self.outPrefix=outName
self.outAll=outAll
def load_signals(self, file):
self.signals=pd.read_csv(file)
for col in signalColumns:
if not col in self.signals.columns:
print("Invalid signals file", file, ": column", col, "is missing")
sys.exit(1)
times=[]
drows=[]
corr=0
for i, s in tqdm(self.signals.iterrows(), desc="Loading signals", total=len(self.signals)):
try:
float(s.rx)
float(s.tx)
int(s.CarTer_Index)
times.append(int(datetime.strptime(s.date, '%Y-%m-%d %H:%M:%S').strftime("%Y%m%d%H%M%S")))
except:
drows.append(i)
continue
if s.t == -99:
s.rx = s.rx*10
s.tx = s.tx*10
corr=corr+1
if len(drows) > 0:
self.signals.drop(index=drows, inplace=True)
self.signals['time']=times
print("Loaded ", len(self.signals), "signals, invalid", len(drows),", adjusted", corr)
def load_links(self, file):
self.links = pd.read_csv(file)
for col in linkColumns:
if not col in self.links.columns:
print("Invalid links file", file, ": column", col, "is missing")
sys.exit(1)
drows=[]
for i, l in tqdm(self.links.iterrows(), desc="Loading links", total=len(self.links)):
try:
float(l.LonA)
float(l.latA)
float(l.LonB)
float(l.latB)
int(l.CarTer_Index)
float(l.CarTer_rxFrequency)
float(l.CarTer_txFrequency)
except:
drows.append(i)
continue
if len(drows):
self.links.drop(index=drows, inplace=True)
print("Loaded ", len(self.links), "links, invalid", len(drows))
def calc(self):
self.links['length'] = pycml.spatial.helper.haversine(lon1=self.links.LonA,
lat1=self.links.latA,
lon2=self.links.LonB,
lat2=self.links.latB)
ds_list = []
for _, row in tqdm(self.links.iterrows(), desc="Preparing links", total=len(self.links)):
ds_list.append(
xr.Dataset(
coords={
'longitude0': row.LonA,
'latitude0': row.latA,
'longitude1': row.LonB,
'latitude1': row.latB,
'frequency': ('sublink_id', [row.CarTer_rxFrequency/1e6, row.CarTer_txFrequency/1e6]),
'length': row.length,
'cml_id': row.CarTer_Index,
# not sure how the two sublinks are stored in metadata and data, hence, now using
# the rx and tx naming convention of the two frequencies, see above
'sublink_id': ('sublink_id', ['rx', 'tx']),
'pol': 'v',
},
)
)
raw_data_dict = {}
for cml_id, g in tqdm(self.signals.groupby(self.signals.CarTer_Index),
desc="Preparing signals", total=len(tqdm(self.links))):
df_temp = g.set_index('time').sort_index()
df_temp['rx'] = df_temp.rx.astype(float)
if df_temp.rx.median() < -100:
df_temp['rx'] = df_temp.rx/10.0
raw_data_dict[cml_id] = df_temp
print("raw data", len(raw_data_dict))
cml_ids_to_remove = []
for ds_cml in tqdm(ds_list, desc="Matching links and signals", total=len(ds_list)):
try:
df_temp = raw_data_dict[int(ds_cml.cml_id.values)]
except KeyError:
print(f'Could not find raw_data in dict for ID {int(ds_cml.cml_id.values)}')
cml_ids_to_remove.append(int(ds_cml.cml_id.values))
continue
ds_cml['rsl'] = df_temp.rx.astype(float)
ds_cml['tsl'] = df_temp.tx.astype(float)
ds_cml['date'] = df_temp.date
cml_ids_to_remove = cml_ids_to_remove + list(self.links.CarTer_Index[self.links.length==0].values)
self.rain = []
for ds_cml in ds_list:
cml_id = int(ds_cml.cml_id.values)
if cml_id in cml_ids_to_remove:
continue
self.rain.append(ds_cml)
print("Clean list:", len(self.rain), len(ds_list))
for cml in self.rain:
cml['tsl'] = cml.tsl.where(cml.tsl < 100.0)
cml['tsl'] = cml.tsl.where(cml.tsl > -50.0)
cml['rsl'] = cml.rsl.where(cml.rsl > -85.0)
cml['trsl'] = cml.tsl - cml.rsl
for cml in self.rain:
cml['trsl'] = cml.trsl.interp(method='linear')
for cml in tqdm(self.rain, desc="Calculating"):
cml['wet'] = cml.trsl.rolling(time=60, center=True).std(skipna=False) > rainThreshold
cml['wet_fraction'] = (cml.wet==1).sum() / len(cml.time)
cml['baseline'] = pycml.processing.baseline.baseline_constant(
trsl=cml.trsl,
wet=cml.wet,
n_average_last_dry=5,
)
cml['waa'] = pycml.processing.wet_antenna.waa_schleiss_2013(
rsl=cml.trsl,
baseline=cml.baseline,
wet=cml.wet,
waa_max=2.2,
delta_t=1,
tau=15,
)
cml['A'] = cml.trsl - cml.baseline - cml.waa
# Note that we set A < 0 to 0 here, but it is not strictly required for
# the next step, because calc_R_from_A sets all rainfall rates below
# a certain threshold (default is 0.1) to 0. Some people might want to
# keep A as it is to check later if there were negative numbers.
cml['A'].values[cml.A < 0] = 0
cml['R'] = pycml.processing.k_R_relation.calc_R_from_A(
A=cml.A, L_km=float(cml.length), f_GHz=cml.frequency, pol=cml.pol)
def dump_rain_csv(self, rain, fname):
field=["latitude", "longitude", "time", "rain"]
lat=(rain.latitude0+rain.latitude1)/2
lon=(rain.longitude0+rain.longitude1)/2
with open(fname, 'w', newline='') as file:
w=csv.writer(file)
w.writerow(field)
for t,s in rain.groupby(rain.time):
w.writerow([lat.values, lon.values, s.date.values, s.R.median().values])
def dump(self):
for r in tqdm(self.rain, desc="Writing output files", total=len(self.rain)):
fname=self.outPrefix+str(r.cml_id.values)+'.csv'
if self.outAll:
r.to_dataframe().to_csv(fname)
else:
self.dump_rain_csv(r, fname)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description=description)
parser.add_argument('-l', '--links', nargs=1, dest='links',
help="CSV file with links information, it must containt columns: "+", ".join(linkColumns))
parser.add_argument('-s', '--signals', nargs=1, dest='signals',
help="CSV file with singals level, it must containt columns: "+", ".join(signalColumns))
parser.add_argument('-p', '--prefix', nargs='?', dest='prefix', default=outPrefix,
help="Prefix of the output file, default is "+outPrefix)
parser.add_argument('-d', '--detailed', default=False, action=argparse.BooleanOptionalAction, dest='all',
help="Dump detailed results")
args = parser.parse_args()
if not args.links or not args.signals:
print("No input files", file=sys.stderr, flush=True)
sys.exit(1)
rc = rainCalc(links=args.links[0], signals=args.signals[0], outName=args.prefix, outAll=args.all)
rc.calc()
rc.dump()