-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcsv_functions.py
1081 lines (953 loc) · 42.4 KB
/
csv_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from flask import request, Response, render_template
import copy
import csv
import io
from urllib.parse import quote
from postprocessing import nullify_and_prune
from fetch_data import extract_nested_dict_keys, get_from_dict
from luts import place_type_labels, demographics_order
from validate_data import place_name_and_type
from datetime import datetime
def create_csv(
data,
endpoint,
place_id=None,
lat=None,
lon=None,
source_metadata=None,
filename_prefix=None,
vars=None,
start_year=None,
end_year=None,
):
"""Create a CSV for any supported data set
Args:
data (dict): dict with same structure as corresponding JSON endpoint
endpoint (str): string used to determine CSV processing approach
place_id (str): place identifier (e.g., AK124)
lat: latitude for points or None for polygons
lon: longitude for points or None for polygons
source_metadata: optional metadata to credit data sources
filename_prefix: optional filename prefix (a month, for example)
vars: optional list of variables to include in CSV
start_year: optional start year for CSV
end_year: optional end year for CSV
Returns:
CSV Response
"""
if not place_id:
place_id = request.args.get("community")
place_name, place_type = place_name_and_type(place_id)
if not endpoint.startswith("places_"):
metadata = csv_metadata(
place_name, place_id, place_type, lat, lon, start_year, end_year
)
else:
metadata = ""
properties = {}
data = nullify_and_prune(data, endpoint)
if data in [{}, None, 0]:
return render_template("404/no_data.html"), 404
if endpoint == "beetles":
properties = beetles_csv(data)
elif endpoint == "cmip6_indicators":
properties = cmip6_indicators_csv(data)
elif endpoint == "cmip6_monthly":
properties = cmip6_monthly_csv(data, vars)
elif endpoint in [
"heating_degree_days_Fdays",
"degree_days_below_zero_Fdays",
"air_thawing_index_Fdays",
"air_freezing_index_Fdays",
"heating_degree_days_Fdays_all",
"degree_days_below_zero_Fdays_all",
"air_thawing_index_Fdays_all",
"air_freezing_index_Fdays_all",
]:
properties = degree_days_csv(data, endpoint)
elif endpoint == "flammability":
properties = flammability_csv(data)
elif endpoint in ["gipl", "gipl_summary"]:
properties = gipl_csv(data, endpoint)
elif endpoint in ["ncar12km_indicators"]:
properties = ncar12km_indicators_csv(data)
elif endpoint == "landfast_sea_ice":
properties = landfast_sea_ice_csv(data)
elif endpoint == "permafrost":
properties = permafrost_csv(data, source_metadata)
elif endpoint.startswith("places_"):
properties = places_csv(data, endpoint)
elif endpoint == "seaice":
properties = seaice_csv(data)
elif endpoint == "snow":
properties = snow_csv(data)
elif endpoint in [
"temperature",
"precipitation",
"taspr",
"temperature_mmm",
"temperature_all",
"precipitation_all",
"proj_precip",
"tas2km",
]:
properties = taspr_csv(data, endpoint)
elif endpoint == "veg_type":
properties = veg_type_csv(data)
elif endpoint in ["wet_days_per_year", "wet_days_per_year_all"]:
properties = wet_days_per_year_csv(data, endpoint)
elif endpoint in ["hydrology", "hydrology_mmm"]:
properties = hydrology_csv(data, endpoint)
elif endpoint == "demographics":
properties = demographics_csv(data)
else:
return render_template("500/server_error.html"), 500
# Append data-specific metadata to location metadata.
properties["metadata"] = metadata + properties["metadata"]
filename = ""
if filename_prefix is not None:
filename += filename_prefix + " "
filename += properties["filename_data_name"]
if start_year is not None and end_year is not None:
filename += f" ({start_year} - {end_year})"
if not endpoint.startswith("places_"):
filename += " for "
if place_name is not None:
filename += place_name
elif endpoint == "demographics":
filename += "All communities in Alaska"
else:
filename += lat + " " + lon
filename += ".csv"
properties["filename"] = quote(filename)
return write_csv(properties)
def csv_metadata(
place_name=None,
place_id=None,
place_type=None,
lat=None,
lon=None,
start_year=None,
end_year=None,
):
"""
Creates metadata string to add to beginning of CSV file.
Args:
place_name (str): Name of the place, None if just lat/lon
place_id (str): place identifier (e.g., AK124)
place_type (str): point or area
lat: latitude for points or None for polygons
lon: longitude for points or None for polygons
start_year: optional start year for CSV
end_year: optional end year for CSV
Returns:
Multiline metadata string
"""
metadata = "# Location: "
if place_name is None and lat is not None and lon is not None:
metadata += lat + " " + lon + "\n"
# if lat and lon and type huc12, then it's a local / point-to-huc query
if place_type == "huc12":
metadata += "# Corresponding HUC12 code: " + place_id + "\n"
elif place_name is None and lat is None and lon is None:
metadata += (
"All communities Alaska\n" # this covers the demographic request for "all"
)
elif place_type == "community":
metadata += place_name + "\n"
else:
metadata += place_name + " (" + place_type_labels[place_type] + ")\n"
if start_year is not None and end_year is not None:
metadata += f"# Time range: ({start_year} - {end_year})\n"
metadata += (
"# View a report for this location at https://earthmaps.io"
+ request.path
+ "\n"
)
return metadata
def build_csv_dicts(packaged_data, package_coords, fill_di=None, values=None):
"""
Returns a list of dicts to be written out later as a CSV.
Args:
packaged_data (json): JSONlike data package output
from the run_fetch_* and run_aggregate_* functions
package_coords (list): list of string values corresponding to
levels of the packaged_data dict. Should be a subset of fieldnames arg.
fill_di (dict): dict to fill in columns with fixed values.
Keys should specify the field name and value should be the
value to fill
Returns:
list of dicts with keys/values corresponding to fieldnames
"""
# extract the coordinate values stored in keys. assumes uniform structure
# across entire data package (i.e. n levels deep where n == len(fieldnames))
data_package_coord_combos = extract_nested_dict_keys(packaged_data)
rows = []
previous_coord_breadcrumb = None
for coords in data_package_coord_combos:
# If there is no data, don't add to CSV line
if len(coords) <= 1:
continue
row_di = {}
# need more general way of handling fields to be inserted before or after
# what are actually available in packaged dicts
for field, coord in zip(package_coords, coords):
row_di[field] = coord
# fill in columns with fixed values if specified
if fill_di:
for fieldname, value in fill_di.items():
row_di[fieldname] = value
# write the actual value
coords.pop()
coord_breadcrumb = coords
if coord_breadcrumb == previous_coord_breadcrumb:
continue
else:
previous_coord_breadcrumb = coord_breadcrumb
for value in values:
coords.append(value)
try:
row_di[value] = get_from_dict(packaged_data, coords)
except KeyError:
row_di[value] = None
coords.pop()
rows.append(row_di)
return rows
def write_csv(properties):
"""
Creates and returns a downloadable CSV file from list of CSV dicts.
Args:
properties (dict): metadata, fieldnames, CSV dicts, and filename
Returns:
CSV Response
"""
output = io.StringIO()
output.write(properties["metadata"])
writer = csv.DictWriter(output, fieldnames=properties["fieldnames"])
writer.writeheader()
writer.writerows(properties["csv_dicts"])
response = Response(
output.getvalue(),
mimetype="text/csv",
headers={
"Content-Type": "text/csv; charset=utf-8",
"Content-Disposition": "attachment; filename="
+ properties["filename"]
+ "; filename*=utf-8''"
+ properties["filename"],
},
)
return response
def beetles_csv(data):
# If this is an area, we include percentages in the CSV fields.
if (
"percent-high-protection"
in data["1988-2017"]["Daymet"]["Historical"]["low"].keys()
):
coords = ["era", "model", "scenario", "snowpack"]
values = [
"climate-protection",
"percent-high-protection",
"percent-minimal-protection",
"percent-no-protection",
]
else:
coords = ["era", "model", "scenario", "snowpack"]
values = ["climate-protection"]
fieldnames = coords + values
csv_dicts = build_csv_dicts(
data,
fieldnames,
values=values,
)
fieldnames_to_unhyphenate = [
"climate-protection",
"percent-high-protection",
"percent-minimal-protection",
"percent-no-protection",
]
# Unhyphenate column headers.
for index in range(len(fieldnames)):
if fieldnames[index] in fieldnames_to_unhyphenate:
fieldnames[index] = fieldnames[index].replace("-", " ")
# Unhyphenate column values.
renamed_csv_dicts = []
for csv_dict in csv_dicts:
renamed_dict = {}
for key, value in csv_dict.items():
if key in fieldnames_to_unhyphenate:
renamed_dict[key.replace("-", " ")] = value
else:
renamed_dict[key] = value
renamed_csv_dicts.append(renamed_dict)
csv_dicts = renamed_csv_dicts
filename_data_name = "Climate Protection from Spruce Beetles"
metadata = "# Values shown are for climate-related protection level from spruce beetle spread in the area.\n"
return {
"csv_dicts": csv_dicts,
"fieldnames": fieldnames,
"metadata": metadata,
"filename_data_name": filename_data_name,
}
def cmip6_indicators_csv(data):
if "summarize" in request.args and request.args.get("summarize") == "mmm":
coords = ["scenario", "model", "year", "variable"]
values = ["max", "mean", "min"]
fieldnames = coords + values
csv_dicts = build_csv_dicts(data, fieldnames, values=values)
metadata = "# dw are Deep Winter Days. This is the number of days with minimum temperature below -30 (deg C).\n"
metadata += "# ftc are Freeze-Thaw Days. This is defined as a day where maximum daily temperature is above 0°C and minimum daily temperature is at or below 0°C.\n"
metadata += "# rx1day is the Maximum 1-day Precipitation. This is the maximum precipitation total for a single calendar day in mm.\n"
metadata += "# su are Summer Days. This is the number of days with maximum temperature above 25 (deg C).\n"
filename_data_name = "CMIP6 Indicators Era Summaries"
else:
coords = ["scenario", "model", "year"]
values = ["dw", "ftc", "rx1day", "su"]
fieldnames = coords + values
csv_dicts = build_csv_dicts(data, fieldnames, values=values)
metadata = "# dw are Deep Winter Days. This is the number of days with minimum temperature below -30 (deg C).\n"
metadata += "# ftc are Freeze-Thaw Days. This is defined as a day where maximum daily temperature is above 0°C and minimum daily temperature is at or below 0°C.\n"
metadata += "# rx1day is the Maximum 1-day Precipitation. This is the maximum precipitation total for a single calendar day in mm.\n"
metadata += "# su are Summer Days. This is the number of days with maximum temperature above 25 (deg C).\n"
filename_data_name = "CMIP6 Indicators"
return {
"csv_dicts": csv_dicts,
"fieldnames": fieldnames,
"metadata": metadata,
"filename_data_name": filename_data_name,
}
def cmip6_monthly_csv(data, vars=None):
metadata_variables = {
"clt": "# clt is the mean monthly cloud area fraction as a percentage.\n",
"evspsbl": "# evspsbl is the total monthly evaporation (including sublimation and transpiration) in kg/m²/s.\n",
"hfls": "# hfls is the mean monthly surface upward latent heat flux in W/m².\n",
"hfss": "# hfss is the mean monthly surface upward sensible heat flux in W/m².\n",
"pr": "# pr is the total monthly precipitation in mm.\n",
"prsn": "# prsn is the precipitation as snow in kg m-2 s-1; includes precipitation of all forms of water in the solid phase.\n",
"psl": "# psl is the mean monthly sea level pressure in Pa.\n",
"rlds": "# rlds is the mean monthly surface downwelling longwave flux in the air in W/m².\n",
"rsds": "# rsds is the mean monthly surface downwelling shortwave flux in the air in W/m².\n",
"sfcWind": "# sfcWind is the mean near surface wind speed in m/s.\n",
"siconc": "# siconc is the sea ice concentration or the percentage of grid cell covered by sea ice.\n",
"swe": "# swe is the snow water equivalent in mm.\n",
"tas": "# tas is the mean monthly temperature in deg C.\n",
"tasmax": "# tasmax is the maximum monthly temperature in deg C.\n",
"tasmin": "# tasmin is the mimimum monthly temperature in deg C.\n",
"ts": "# ts is the mean monthly surface temperature in deg C.\n",
"uas": "# uas is the mean monthly near surface eastward wind in m/s.\n",
"vas": "# vas is the mean monthly near surface northward wind in m/s.\n",
}
coords = ["model", "scenario", "month"]
if vars is not None:
values = vars
else:
values = list(metadata_variables.keys())
fieldnames = coords + values
csv_dicts = build_csv_dicts(data, fieldnames, values=values)
metadata = ""
for variable in values:
metadata += metadata_variables[variable]
# This dictionary contains the variable pairs that would append to the file name if selected.
# This is most likely to happen when the user is downloading the CSV from ARDAC.
cmip6_variable_groups = {
"Temperature": {"tas", "tasmin", "tasmax"},
"Precipitation": {"pr"},
"Wind": {"sfcWind", "uas", "vas"},
"Oceanography": {"psl", "ts"},
"Evaporation": {"evspsbl"},
"Solar Radiation & Cloud Cover": {"rsds", "rlds", "hfss", "hfls", "clt"},
"Snow": {"swe", "prsn"},
"Sea Ice": {"siconc"},
}
cmip6_variable_name = None
# This checks if the variables going into the CSV are a part of the CMIP6 variable groups.
# The set of variables must match the required variables exactly or else the default name is used.
for name, required_vars in cmip6_variable_groups.items():
if required_vars == set(vars):
cmip6_variable_name = name
break
# File name is "CMIP6 Monthly" by default.
filename_data_name = (
f"CMIP6 Monthly {cmip6_variable_name}"
if cmip6_variable_name
else "CMIP6 Monthly"
)
return {
"csv_dicts": csv_dicts,
"fieldnames": fieldnames,
"metadata": metadata,
"filename_data_name": filename_data_name,
}
def degree_days_csv(data, endpoint):
if endpoint in [
"heating_degree_days_Fdays",
"degree_days_below_zero_Fdays",
"air_thawing_index_Fdays",
"air_freezing_index_Fdays",
]:
coords = ["model"]
values = ["ddmin", "ddmean", "ddmax"]
elif endpoint in [
"heating_degree_days_Fdays_all",
"degree_days_below_zero_Fdays_all",
"air_thawing_index_Fdays_all",
"air_freezing_index_Fdays_all",
"dd_preview",
]:
coords = ["model", "scenario", "year"]
values = ["dd"]
fieldnames = coords + values
csv_dicts = build_csv_dicts(data, fieldnames, values=values)
if endpoint in ["heating_degree_days_Fdays", "heating_degree_days_Fdays_all"]:
filename_data_name = "Heating Degree Days"
metadata = "# dd is the cumulative annual degree days below 65 degrees F for the specified model and scenario\n"
elif endpoint in [
"degree_days_below_zero_Fdays",
"degree_days_below_zero_Fdays_all",
]:
filename_data_name = "Degree Days Below Zero"
metadata = "# dd is the cumulative annual degree days below 0 degrees F for the specified model and scenario\n"
elif endpoint in ["air_thawing_index_Fdays", "air_thawing_index_Fdays_all"]:
filename_data_name = "Air Thawing Index"
metadata = "# dd is the cumulative annual degree days above freezing for the specified model and scenario\n"
elif endpoint in ["air_freezing_index_Fdays", "air_freezing_index_Fdays_all"]:
filename_data_name = "Air Freezing Index"
metadata = "# dd is the cumulative annual degree days below freezing for the specified model and scenario\n"
return {
"csv_dicts": csv_dicts,
"fieldnames": fieldnames,
"metadata": metadata,
"filename_data_name": filename_data_name,
}
def flammability_csv(data):
# Reformat data to nesting structure expected by other CSV functions.
for era in data.keys():
for model in data[era].keys():
for scenario, value in data[era][model].items():
data[era][model][scenario] = {"mean": value}
coords = ["date_range", "model", "scenario"]
values = ["mean"]
fieldnames = coords + values
csv_dicts = build_csv_dicts(data, fieldnames, values=values)
filename_data_name = "Flammability"
metadata = "# mean is the mean of of annual means\n"
return {
"csv_dicts": csv_dicts,
"fieldnames": fieldnames,
"metadata": metadata,
"filename_data_name": filename_data_name,
}
def gipl_csv(data, endpoint):
if endpoint == "gipl_summary":
coords = ["summary"]
elif endpoint == "gipl" or endpoint == "gipl_preview":
coords = ["model", "year", "scenario"]
values = [
"magt0.5m",
"magt1m",
"magt2m",
"magt3m",
"magt4m",
"magt5m",
"magtsurface",
"permafrostbase",
"permafrosttop",
"talikthickness",
]
fieldnames = coords + values
csv_dicts = build_csv_dicts(data, fieldnames, values=values)
if endpoint == "gipl_preview":
metadata = ""
else:
metadata = "# GIPL model outputs for ten variables including mean annual ground temperature (deg C) at various depths below the surface as well as talik thickness (m) and depths of permafrost base and top (m)\n"
filename_data_name = "GIPL 1 km Model Outputs"
return {
"csv_dicts": csv_dicts,
"fieldnames": fieldnames,
"metadata": metadata,
"filename_data_name": filename_data_name,
}
def ncar12km_indicators_csv(data):
# Reorder eras so that midcentury rows appear before longterm rows in CSV.
reordered = {}
for indicator in data.keys():
reordered[indicator] = {}
for era in ["historical", "midcentury", "longterm"]:
if era in data[indicator].keys():
reordered[indicator][era] = data[indicator][era]
coords = ["indicator", "era", "model", "scenario"]
values = ["min", "mean", "max"]
fieldnames = coords + values
csv_dicts = build_csv_dicts(reordered, fieldnames, values=values)
metadata = "# cd is the Very Cold Day Threshold. Only 5 days in a year are colder than this.\n"
metadata += "# cdd are Consecutive Dry Days. This is the number of consecutive days with less than 1mm precipitation.\n"
metadata += "# csdi is the Cold Spell Duration Index. This is a cold spell metric: the number of cold days (<10th percentile) occurring in a row following an initial cold spell period of six days.\n"
metadata += "# cwd are Consecutive Wet Days. This is the number of consecutive days with more than 1mm precipitation.\n"
metadata += "# dw are Deep Winter Days. This is the number of days with mean temperature below -30 (deg C).\n"
metadata += "# hd is the Very Hot Day Threshold. Only 5 days in a year are warmer than this.\n"
metadata += "# r10mm are Heavy Precipitation Days. This is the number of individual days with 10mm or more precipitation.\n"
metadata += "# rx1day is the Maximum 1-day Precipitation. This is the maximum precipitation total for a single day in mm.\n"
metadata += "# rx5day is the Maximum 5-day Precipitation. This is the maximum precipitation total for a 5-day period in mm.\n"
metadata += "# su are Summer Days. This is the number of days with mean temperature above 25 (deg C).\n"
metadata += "# wsdi is the Warm Spell Duration Index. This is a heat wave metric: the number of hot days (>90th percentile) occurring in a row following an initial warm spell period of six days.\n"
filename_data_name = "Temperature & Precipitation Indicators"
return {
"csv_dicts": csv_dicts,
"fieldnames": fieldnames,
"metadata": metadata,
"filename_data_name": filename_data_name,
}
def landfast_sea_ice_csv(data):
# Reformat data to nesting structure expected by other CSV functions.
for key, value in data.items():
data[key] = {"value": value}
coords = ["date"]
values = ["value"]
fieldnames = coords + values
csv_dicts = build_csv_dicts(data, fieldnames, values=values)
metadata = "# Landfast Sea Ice Value Key: 0: Open ocean or non-landfast sea ice; 128: Land; 255: Landfast Sea Ice\n"
filename_data_name = "Landfast Sea Ice"
return {
"csv_dicts": csv_dicts,
"fieldnames": fieldnames,
"metadata": metadata,
"filename_data_name": filename_data_name,
}
def permafrost_csv(data, source_metadata):
filename_data_name = "Permafrost"
sources = {
"gipl_1km": {
"coords": [
"source",
"model",
"year",
"scenario",
],
"values": [
"magt0.5m",
"magt1m",
"magt2m",
"magt3m",
"magt4m",
"magt5m",
"magtsurface",
"permafrostbase",
"permafrosttop",
"talikthickness",
],
},
}
metadata = "# magt*m is the mean annual ground temperature at a given depth (* meters) in degrees Celsius\n"
metadata += "# magtsurface is the mean annual ground temperature at the ground surface in degrees Celsius\n"
metadata += "# permafrost base is the lower boundary of the permafrost below the surface in meters\n"
metadata += "# permafrost top is the upper boundary of the permafrost below the surface in meters\n"
metadata += "# talikthickness is the thickness of the perennially unfrozen ground occurring in permafrost terrain in meters\n"
metadata += "# gipl is the Geophysical Institute's Permafrost Laboratory\n"
all_fields = []
csv_dicts = []
for source in sources.keys():
fieldnames = sources[source]["coords"] + sources[source]["values"]
all_fields += fieldnames
source_data = {source: data[source]}
metadata += "# " + source_metadata[source] + "\n"
csv_dicts += build_csv_dicts(
source_data, fieldnames, values=sources[source]["values"]
)
fieldnames = list(dict.fromkeys(all_fields))
return {
"csv_dicts": csv_dicts,
"fieldnames": fieldnames,
"metadata": metadata,
"filename_data_name": filename_data_name,
}
def places_csv(data, endpoint):
if endpoint in ["places_all", "places_communities"]:
values = [
"name",
"alt_name",
"region",
"country",
"latitude",
"longitude",
"type",
]
else:
values = [
"name",
"type",
]
reformatted_data = {}
for item in data:
reformatted_data[item["id"]] = {}
for key in values:
if key in item.keys():
reformatted_data[item["id"]].update({key: item[key]})
else:
reformatted_data[item["id"]].update({key: None})
coords = ["id"]
fieldnames = coords + values
csv_dicts = build_csv_dicts(reformatted_data, fieldnames, values=values)
metadata = "# Places listed here can be used in queries to the Alaska + Arctic Geospatial Data API\n"
if endpoint == "places_all":
filename_data_name = "Places (All)"
elif endpoint == "places_communities":
filename_data_name = "Places (Communities)"
elif endpoint == "places_huc":
filename_data_name = "Places (HUCs)"
elif endpoint == "places_corporation":
filename_data_name = "Places (Corporations)"
elif endpoint == "places_climate_division":
filename_data_name = "Places (Climate Divisions)"
elif endpoint == "places_ethnolinguistic_region":
filename_data_name = "Places (Ethnolinguistic Regions)"
elif endpoint == "places_game_management_unit":
filename_data_name = "Places (Game Management Units)"
elif endpoint == "places_fire_zone":
filename_data_name = "Places (Fire Zones)"
elif endpoint == "places_first_nation":
filename_data_name = "Places (First Nations)"
elif endpoint == "places_borough":
filename_data_name = "Places (Boroughs)"
elif endpoint == "places_census_area":
filename_data_name = "Places (Census Areas)"
elif endpoint == "places_protected_area":
filename_data_name = "Places (Protected Areas)"
return {
"csv_dicts": csv_dicts,
"fieldnames": fieldnames,
"metadata": metadata,
"filename_data_name": filename_data_name,
}
def seaice_csv(data):
reformatted_data = {}
for key, value in data.items():
[year, month] = key.split("-")
month_name = datetime.strptime(month, "%m").strftime("%B")
if year not in reformatted_data:
reformatted_data[year] = {}
reformatted_data[year][month_name] = {"concentration": value}
coords = ["year", "month"]
values = ["concentration"]
fieldnames = coords + values
csv_dicts = build_csv_dicts(reformatted_data, fieldnames, values=values)
metadata = "# Sea Ice Concentration is the percentage of sea ice coverage at the given latitude and longitude for each year and month.\n"
filename_data_name = "Sea Ice Concentration"
return {
"csv_dicts": csv_dicts,
"fieldnames": fieldnames,
"metadata": metadata,
"filename_data_name": filename_data_name,
}
def snow_csv(data):
coords = ["model", "scenario", "decade"]
values = ["SFE"]
fieldnames = coords + values
csv_dicts = build_csv_dicts(data, fieldnames, values=values)
metadata = "# SFE is the total annual snowfall equivalent in millimeters for the specified model-scenario-decade\n"
filename_data_name = "SFE"
return {
"csv_dicts": csv_dicts,
"fieldnames": fieldnames,
"metadata": metadata,
"filename_data_name": filename_data_name,
}
def taspr_csv(data, endpoint):
tas_metadata = "# tas is the mean annual near-surface air temperature in degrees Celsius for the specified model and scenario\n"
pr_metadata = "# pr is the total annual precipitation in millimeters for the specified model and scenario\n"
csv_dicts = []
if endpoint in ["temperature", "precipitation", "taspr"]:
all_fields = []
# Any key starting with year less than 2010 is considered historical.
historical_data = {k: v for (k, v) in data.items() if int(k[0:4]) < 2010}
coords = ["date_range", "season", "model", "scenario", "variable"]
values = ["mean", "min", "max", "median", "hi_std", "lo_std", "q1", "q3"]
fieldnames = coords + values
all_fields += fieldnames
csv_dicts += build_csv_dicts(historical_data, fieldnames, values=values)
# Any key starting with year 2010 or higher is considered projected.
projected_data = {k: v for (k, v) in data.items() if int(k[0:4]) >= 2010}
coords = ["date_range", "season", "model", "scenario"]
metadata = "# mean is the mean of annual means\n"
metadata += "# median is the median of annual means\n"
metadata += "# max is the maximum annual mean\n"
metadata += "# min is the minimum annual mean\n"
metadata += "# q1 is the first quartile of the annual means\n"
metadata += "# q3 is the third quartile of the annual means\n"
metadata += "# hi_std is the mean + standard deviation of annual means\n"
metadata += "# lo_std is the mean - standard deviation of annual means\n"
metadata += "# DJF is December - February\n"
metadata += "# MAM is March - May\n"
metadata += "# JJA is June - August\n"
metadata += "# SON is September - November\n"
if endpoint == "temperature":
values = ["tas"]
metadata = tas_metadata + metadata
filename_data_name = "Temperature"
elif endpoint == "precipitation":
values = ["pr"]
metadata = pr_metadata + metadata
filename_data_name = "Precipitation"
elif endpoint == "taspr":
values = ["tas", "pr"]
metadata = tas_metadata + pr_metadata + metadata
filename_data_name = "Temperature & Precipitation"
fieldnames = coords + values
all_fields += fieldnames
csv_dicts += build_csv_dicts(projected_data, fieldnames, values=values)
# Reformat CSV dicts to have more consistent column structure between
# historical and projected stats.
reformatted_csv_dicts = []
for csv_dict in csv_dicts:
# Add "tas" to variable column and rename value column to "mean".
if "tas" in csv_dict:
tas_dict = copy.deepcopy(csv_dict)
if "pr" in tas_dict:
del tas_dict["pr"]
tas_dict["variable"] = "tas"
tas_dict["mean"] = tas_dict.pop("tas")
reformatted_csv_dicts.append(tas_dict)
# Add "pr" to variable column and rename value column to "mean".
if "pr" in csv_dict:
pr_dict = copy.deepcopy(csv_dict)
if "tas" in pr_dict:
del pr_dict["tas"]
pr_dict["variable"] = "pr"
pr_dict["mean"] = pr_dict.pop("pr")
reformatted_csv_dicts.append(pr_dict)
# For historical CSV dicts, copy as-is.
if "tas" not in csv_dict and "pr" not in csv_dict:
reformatted_csv_dicts.append(csv_dict)
if "tas" in all_fields:
all_fields.remove("tas")
if "pr" in all_fields:
all_fields.remove("pr")
all_fields.append("mean")
csv_dicts = reformatted_csv_dicts
fieldnames = list(dict.fromkeys(all_fields))
elif endpoint in ["temperature_mmm", "precipitation_mmm"]:
tas_metadata = "# tas is the temperature at surface in degrees Celsius\n"
pr_metadata = "# pr is precipitation in millimeters\n"
coords = ["model", "scenario", "year"]
if endpoint == "temperature_mmm":
values = ["tasmin", "tasmean", "tasmax"]
elif endpoint == "precipitation_mmm":
values = ["prmin", "prmean", "prmax"]
fieldnames = coords + values
csv_dicts = build_csv_dicts(data, fieldnames, values=values)
metadata = (
"# tasmin is the minimum temperature for the specified model and scenario\n"
)
metadata += (
"# tasmean is the mean temperature for the specified model and scenario\n"
)
metadata += (
"# tasmax is the maximum temperature for the specified model and scenario\n"
)
if endpoint == "temperature_mmm":
metadata = tas_metadata + metadata
filename_data_name = "Temperature"
elif endpoint == "precipitation_mmm":
metadata = pr_metadata + metadata
filename_data_name = "Precipitation"
elif endpoint in ["temperature_all", "precipitation_all"]:
coords = ["model", "scenario", "year"]
if endpoint == "temperature_all":
values = ["tas"]
elif endpoint == "precipitation_all":
values = ["pr"]
fieldnames = coords + values
csv_dicts = build_csv_dicts(data, fieldnames, values=values)
if endpoint == "temperature_all":
metadata = tas_metadata
filename_data_name = "Temperature"
elif endpoint == "precipitation_all":
metadata = pr_metadata
filename_data_name = "Precipitation"
elif endpoint == "proj_precip":
coords = ["exceedance_probability", "duration", "model", "era"]
values = ["pf", "pf_lower", "pf_upper"]
fieldnames = coords + values
csv_dicts = build_csv_dicts(data, fieldnames, values=values)
metadata = (
"# exceedance_probability is the annual exceedance probability in percent\n"
)
metadata += "# duration is the amount of time for the predicted amount of precipitation\n"
metadata += "# model is the model the data is derived from\n"
metadata += (
"# era is the time range for this predicted amount of precipitation \n"
)
metadata += "# pf is amount of precipitation in mm\n"
metadata += "# pf_lower is the lower bound of the 95% confidence interval of the variable pf\n"
metadata += "# pf_upper is the upper bound of the 95% confidence interval of the variable pf\n"
filename_data_name = "Future Projections of Precipitation"
elif endpoint == "tas2km":
all_fields = []
coords = ["model", "scenario", "month", "year"]
values = ["tasmin", "tasmean", "tasmax"]
fieldnames = coords + values
all_fields += fieldnames
csv_dicts += build_csv_dicts(data["historical"], fieldnames, values=values)
csv_dicts += build_csv_dicts(data["projected"], fieldnames, values=values)
metadata = "# tasmin is the minimum temperature in degrees C\n"
metadata += "# tasmean is the mean temperature in degrees C\n"
metadata += "# tasmax is the maximum temperature in degrees C\n"
metadata = tas_metadata + metadata
filename_data_name = "Monthly Temperature"
# Change "CRU_historical" scenario to just "Historical".
for csv_dict in csv_dicts:
if (
endpoint not in ["proj_precip", "tas2km"]
and csv_dict["scenario"] == "CRU_historical"
):
csv_dict["scenario"] = "Historical"
return {
"csv_dicts": csv_dicts,
"fieldnames": fieldnames,
"metadata": metadata,
"filename_data_name": filename_data_name,
}
def veg_type_csv(data):
# Reformat data to nesting structure expected by other CSV functions.
for era in data.keys():
for model in data[era].keys():
for scenario in data[era][model].keys():
for veg_type, value in data[era][model][scenario].items():
data[era][model][scenario][veg_type] = {"percent": value}
coords = ["date_range", "model", "scenario", "veg_type"]
values = ["percent"]
fieldnames = coords + values
csv_dicts = build_csv_dicts(data, fieldnames, values=values)
filename_data_name = "Vegetation Type"
return {
"csv_dicts": csv_dicts,
"fieldnames": fieldnames,
"metadata": "",
"filename_data_name": filename_data_name,
}
def wet_days_per_year_csv(data, endpoint):
if endpoint == "wet_days_per_year":
coords = ["era"]
values = ["wdpymin", "wdpymean", "wdpymax"]
elif endpoint == "wet_days_per_year_all":
coords = ["model", "year"]
values = ["wdpy"]
fieldnames = coords + values
csv_dicts = build_csv_dicts(data, fieldnames, values=values)
metadata = "# wdpy is the count of wet days (days where the total precipitation amount is greater than or equal to 1.0 mm) per calendar year\n"
filename_data_name = "Wet Days Per Year"
return {
"csv_dicts": csv_dicts,
"fieldnames": fieldnames,
"metadata": metadata,
"filename_data_name": filename_data_name,
}
def hydrology_csv(data, endpoint):
if endpoint == "hydrology":
coords = ["model", "scenario", "month", "era"]
values = [
"evap",
"glacier_melt",
"iwe",
"pcp",
"runoff",
"sm1",
"sm2",
"sm3",
"snow_melt",
"swe",
"tmax",
"tmin",
]
fieldnames = coords + values
csv_dicts = build_csv_dicts(data, fieldnames, values=values)
metadata = "# Hydrology model outputs for ten variables; decadal means of monthly values.\n"
metadata += "# model is the model the data is derived from\n"
metadata += "# scenario is the emissions scenario\n"
metadata += "# month is the month of year over which data are summarized\n"
metadata += "# era is the decade over which data are summarized\n"
metadata += "# variable is the hydrology variable name\n"
metadata += "# evap is the decadal mean of the monthly sum of daily evapotranspiration in mm\n"
metadata += "# glacier_melt is the decadal mean of the monthly sum of daily glacier ice melt in mm\n"
metadata += "# iwe is the decadal mean of the monthly maximum of daily ice water equivalent in mm\n"
metadata += "# pcp is the decadal mean of the monthly sum of daily precipitation in mm\n"
metadata += "# runoff is the decadal mean of the monthly sum of daily surface runoff in mm\n"
metadata += "# sm1 is the decadal mean of the monthly mean of daily soil moisture in layer 1 in mm\n"
metadata += "# sm2 is the decadal mean of the monthly mean of daily soil moisture in layer 2 in mm\n"
metadata += "# sm3 is the decadal mean of the monthly mean of daily soil moisture in layer 3 in mm\n"
metadata += "# snowmelt is the decadal mean of the monthly sum of daily snowmelt in mm\n"
metadata += "# swe is the decadal mean of the monthly maximum of daily snow water equivalent in mm\n"
metadata += "# tmax is the decadal mean of the monthly mean of daily maximum air temperature at 2m in degrees C\n"
metadata += "# tmin is the decadal mean of the monthly mean of daily minimum air temperature at 2m in degrees C\n"
filename_data_name = "Hydrology Model Outputs - Decadal Mean Values - "
return {
"csv_dicts": csv_dicts,