forked from sayakpaul/TF-2.0-Hacks
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcustom_df_gen.py
56 lines (45 loc) · 1.8 KB
/
custom_df_gen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# Reference: https://stanford.edu/~shervine/blog/keras-how-to-generate-data-on-the-fly
from tensorflow import keras
import numpy as np
import cv2
import os
class DataGenerator(keras.utils.Sequence):
'Generates data for Keras'
def __init__(self, dataframe, x_col, directory, batch_size,
dim=(224, 224), n_channels=3):
'Initialization'
self.dataframe = dataframe
self.x_col = x_col
self.directory = directory
self.batch_size = batch_size
self.dim = dim
self.n_channels = n_channels
self.on_epoch_end()
def __len__(self):
'Denotes the number of batches per epoch'
return int(np.floor(len(self.dataframe) / self.batch_size))
def __getitem__(self, index):
'Generate one batch of data'
# Generate indexes of the batch
indexes = self.indexes[index*self.batch_size:(index+1)*self.batch_size]
# Find list of IDs
list_IDs_temp = [self.dataframe[self.x_col][k] for k in indexes]
# Generate data
X = self.__data_generation(list_IDs_temp)
return X
def on_epoch_end(self):
'Updates indexes after each epoch'
self.indexes = np.arange(len(self.dataframe))
def __data_generation(self, list_IDs_temp):
'Generates data containing batch_size samples' # X : (n_samples, *dim, n_channels)
# Initialization
X = np.empty((self.batch_size, *self.dim, self.n_channels))
# Generate data
for i, ID in enumerate(list_IDs_temp):
# Store sample
image_path = os.path.join(self.directory, ID)
image = cv2.imread(image_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = cv2.resize(image, self.dim)
X[i,] = image
return X