-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
49 lines (39 loc) · 1.82 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import streamlit as st
import boto3
from botocore.exceptions import ClientError
import json
from bedrock_utils import query_knowledge_base, generate_response, valid_prompt
# Streamlit UI
st.title("Bedrock Chat Application")
# Sidebar for configurations
st.sidebar.header("Configuration")
model_id = st.sidebar.selectbox("Select LLM Model", ["anthropic.claude-3-haiku-20240307-v1:0", "anthropic.claude-3-5-sonnet-20240620-v1:0"])
kb_id = st.sidebar.text_input("Knowledge Base ID", "your-knowledge-base-id")
temperature = st.sidebar.select_slider("Temperature", [i/10 for i in range(0,11)],1)
top_p = st.sidebar.select_slider("Top_P", [i/1000 for i in range(0,1001)], 1)
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# Display chat messages
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Chat input
if prompt := st.chat_input("What would you like to know?"):
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
if valid_prompt(prompt, model_id):
# Query Knowledge Base
kb_results = query_knowledge_base(prompt, kb_id)
# Prepare context from Knowledge Base results
context = "\n".join([result['content']['text'] for result in kb_results])
# Generate response using LLM
full_prompt = f"Context: {context}\n\nUser: {prompt}\n\n"
response = generate_response(full_prompt, model_id, temperature, top_p)
else:
response = "I'm unable to answer this, please try again"
# Display assistant response
with st.chat_message("assistant"):
st.markdown(response)
st.session_state.messages.append({"role": "assistant", "content": response})