-
Notifications
You must be signed in to change notification settings - Fork 8
/
nn.py
292 lines (232 loc) · 11 KB
/
nn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
from collections import OrderedDict
import logging
import scipy
import numpy as np
from theano import tensor
from theano.tensor.signal.downsample import max_pool_2d, DownsampleFactorMax
from blocks.extensions import SimpleExtension
from blocks.extensions.monitoring import (DataStreamMonitoring,
MonitoringExtension)
from blocks.filter import VariableFilter
from blocks.graph import ComputationGraph
from blocks.monitoring.evaluators import DatasetEvaluator
from blocks.roles import AuxiliaryRole
logger = logging.getLogger('main.nn')
class BnParamRole(AuxiliaryRole):
pass
# Batch normalization parameters that have to be replaced when testing
BNPARAM = BnParamRole()
class ZCA(object):
def __init__(self, n_components=None, data=None, filter_bias=0.1):
self.filter_bias = np.float32(filter_bias)
self.P = None
self.P_inv = None
self.n_components = 0
self.is_fit = False
if n_components and data:
self.fit(n_components, data)
def fit(self, n_components, data):
if len(data.shape) == 2:
self.reshape = None
else:
assert n_components == np.product(data.shape[1:]), \
'ZCA whitening components should be %d for convolutional data'\
% np.product(data.shape[1:])
self.reshape = data.shape[1:]
data = self._flatten_data(data)
assert len(data.shape) == 2
n, m = data.shape
self.mean = np.mean(data, axis=0)
bias = self.filter_bias * scipy.sparse.identity(m, 'float32')
cov = np.cov(data, rowvar=0, bias=1) + bias
eigs, eigv = scipy.linalg.eigh(cov)
assert not np.isnan(eigs).any()
assert not np.isnan(eigv).any()
assert eigs.min() > 0
if self.n_components:
eigs = eigs[-self.n_components:]
eigv = eigv[:, -self.n_components:]
sqrt_eigs = np.sqrt(eigs)
self.P = np.dot(eigv * (1.0 / sqrt_eigs), eigv.T)
assert not np.isnan(self.P).any()
self.P_inv = np.dot(eigv * sqrt_eigs, eigv.T)
self.P = np.float32(self.P)
self.P_inv = np.float32(self.P_inv)
self.is_fit = True
def apply(self, data, remove_mean=True):
data = self._flatten_data(data)
d = data - self.mean if remove_mean else data
return self._reshape_data(np.dot(d, self.P))
def inv(self, data, add_mean=True):
d = np.dot(self._flatten_data(data), self.P_inv)
d += self.mean if add_mean else 0.
return self._reshape_data(d)
def _flatten_data(self, data):
if self.reshape is None:
return data
assert data.shape[1:] == self.reshape
return data.reshape(data.shape[0], np.product(data.shape[1:]))
def _reshape_data(self, data):
assert len(data.shape) == 2
if self.reshape is None:
return data
return np.reshape(data, (data.shape[0],) + self.reshape)
class ContrastNorm(object):
def __init__(self, scale=55, epsilon=1e-8):
self.scale = np.float32(scale)
self.epsilon = np.float32(epsilon)
def apply(self, data, copy=False):
if copy:
data = np.copy(data)
data_shape = data.shape
if len(data.shape) > 2:
data = data.reshape(data.shape[0], np.product(data.shape[1:]))
assert len(data.shape) == 2, 'Contrast norm on flattened data'
data -= data.mean(axis=1)[:, np.newaxis]
norms = np.sqrt(np.sum(data ** 2, axis=1)) / self.scale
norms[norms < self.epsilon] = np.float32(1.)
data /= norms[:, np.newaxis]
if data_shape != data.shape:
data = data.reshape(data_shape)
return data
class TestMonitoring(object):
def _get_bn_params(self, output_vars):
# Pick out the nodes with batch normalization vars
cg = ComputationGraph(output_vars)
var_filter = VariableFilter(roles=[BNPARAM])
bn_ps = var_filter(cg.variables)
if len(bn_ps) == 0:
logger.warn('No batch normalization parameters found - is' +
' batch normalization turned off?')
self._bn = False
self._counter = None
self._counter_max = None
bn_share = []
output_vars_replaced = output_vars
else:
self._bn = True
assert len(set([p.name for p in bn_ps])) == len(bn_ps), \
'Some batch norm params have the same name'
logger.info('Batch norm parameters: %s' % ', '.join([p.name for p in bn_ps]))
# Filter out the shared variables from the model updates
def filter_share(par):
lst = [up for up in cg.updates if up.name == 'shared_%s' % par.name]
assert len(lst) == 1
return lst[0]
bn_share = map(filter_share, bn_ps)
# Replace the BN coefficients in the test data model - Replace the
# theano variables in the test graph with the shareds
output_vars_replaced = cg.replace(zip(bn_ps, bn_share)).outputs
# Pick out the counter
self._counter = self._param_from_updates(cg.updates, 'counter')
self._counter_max = self._param_from_updates(cg.updates, 'counter_max')
return bn_ps, bn_share, output_vars_replaced
def _param_from_updates(self, updates, p_name):
var_filter = VariableFilter(roles=[BNPARAM])
bn_ps = var_filter(updates.keys())
p = [p for p in bn_ps if p.name == p_name]
assert len(p) == 1, 'No %s of more than one %s' % (p_name, p_name)
return p[0]
def reset_counter(self):
if self._bn:
self._counter.set_value(np.float32(1))
def replicate_vars(self, output_vars):
# Problem in Blocks with multiple monitors monitoring the
# same value in a graph. Therefore, they are all "replicated" to a new
# Theano variable
if isinstance(output_vars, (list, tuple)):
return map(self.replicate_vars, output_vars)
assert not hasattr(output_vars.tag, 'aggregation_scheme'), \
'The variable %s already has an aggregator ' % output_vars.name + \
'assigned to it - are you using a datasetmonitor with the same' + \
' variable as output? This might cause trouble in Blocks'
new_var = 1 * output_vars
new_var.name = output_vars.name
return new_var
class ApproxTestMonitoring(DataStreamMonitoring, TestMonitoring):
def __init__(self, output_vars, *args, **kwargs):
output_vars = self.replicate_vars(output_vars)
_, _, replaced_vars = self._get_bn_params(output_vars)
super(ApproxTestMonitoring, self).__init__(replaced_vars, *args,
**kwargs)
def do(self, which_callback, *args, **kwargs):
assert not which_callback == "after_batch", "Do not monitor each mb"
self.reset_counter()
super(ApproxTestMonitoring, self).do(which_callback, *args, **kwargs)
class FinalTestMonitoring(SimpleExtension, MonitoringExtension, TestMonitoring):
"""Monitors validation and test set data with batch norm
Calculates the training set statistics for batch normalization and adds
them to the model before calculating the validation and test set values.
This is done in two steps: First the training set is iterated and the
statistics are saved in shared variables, then the model iterates through
the test/validation set using the saved shared variables.
When the training set is iterated, it is done for the full set, layer by
layer so that the statistics are correct. This is expensive for very deep
models, in which case some approximation could be in order
"""
def __init__(self, output_vars, train_data_stream, test_data_stream,
**kwargs):
output_vars = self.replicate_vars(output_vars)
super(FinalTestMonitoring, self).__init__(**kwargs)
self.trn_stream = train_data_stream
self.tst_stream = test_data_stream
bn_ps, bn_share, output_vars_replaced = self._get_bn_params(output_vars)
if self._bn:
updates = self._get_updates(bn_ps, bn_share)
trn_evaluator = DatasetEvaluator(bn_ps, updates=updates)
else:
trn_evaluator = None
self._trn_evaluator = trn_evaluator
self._tst_evaluator = DatasetEvaluator(output_vars_replaced)
def _get_updates(self, bn_ps, bn_share):
cg = ComputationGraph(bn_ps)
# Only store updates that relate to params or the counter
updates = OrderedDict([(up, cg.updates[up]) for up in
cg.updates if up.name == 'counter' or
up in bn_share])
assert self._counter == self._param_from_updates(cg.updates, 'counter')
assert self._counter_max == self._param_from_updates(cg.updates,
'counter_max')
assert len(updates) == len(bn_ps) + 1, \
'Counter or var missing from update'
return updates
def do(self, which_callback, *args):
"""Write the values of monitored variables to the log."""
assert not which_callback == "after_batch", "Do not monitor each mb"
# Run on train data and get the statistics
if self._bn:
self._counter_max.set_value(np.float32(np.inf))
self.reset_counter()
self._trn_evaluator.evaluate(self.trn_stream)
self.reset_counter()
value_dict = self._tst_evaluator.evaluate(self.tst_stream)
self.add_records(self.main_loop.log, value_dict.items())
class LRDecay(SimpleExtension):
def __init__(self, lr, decay_first, decay_last, lrmin=0., **kwargs):
super(LRDecay, self).__init__(**kwargs)
self.iter = 0
self.decay_first = decay_first
self.decay_last = decay_last
self.lr = lr
self.lrmin = lrmin
self.lr_init = lr.get_value()
def do(self, which_callback, *args):
self.iter += 1
if self.iter > self.decay_first:
ratio = 1.0 * (self.decay_last - self.iter)
ratio = np.maximum(0, ratio / (self.decay_last - self.decay_first + 1e-6))
self.lr.set_value(np.float32(ratio * (self.lr_init - self.lrmin) + self.lrmin))
logger.info("Iter %d, lr %f" % (self.iter, self.lr.get_value()))
def global_meanpool_2d(x, num_filters):
mean = tensor.mean(x.flatten(3), axis=2)
mean = mean.dimshuffle(0, 1, 'x', 'x')
return mean, (num_filters, 1, 1)
def pool_2d(x, mode="average", ws=(2, 2), stride=(2, 2)):
import theano.sandbox.cuda as cuda
assert cuda.dnn.dnn_available()
return cuda.dnn.dnn_pool(x, ws=ws, stride=stride, mode=mode)
def maxpool_2d(z, in_dim, poolsize, poolstride):
z = max_pool_2d(z, ds=poolsize, st=poolstride)
output_size = tuple(DownsampleFactorMax.out_shape(in_dim, poolsize,
st=poolstride))
return z, output_size