-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
444 lines (392 loc) · 16.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
"""
Code base corresponds to https://github.com/ibalazevic/TuckER
"""
import time
import argparse
import datetime
import os
from collections import defaultdict
from load_data import Data
from model import TuckER, RESCAL
from interpretability_evaluation import getDistRatio, pick_top_k
from gRDA import gRDA_momentum, gRDAAdam
import wandb
import numpy as np
import torch
import torch.nn.functional as F
class Experiment:
def __init__(self,
learning_rate=0.0005,
ent_vec_dim=200,
rel_vec_dim=200,
num_iterations=500,
batch_size=128,
decay_rate=0.,
cuda=False,
input_dropout=0.3,
hidden_dropout1=0.4,
hidden_dropout2=0.5,
label_smoothing=0.,
loss='CE',
optimizer='RDA',
reg=10e-08,
mu=0.5,
c=0.0005,
model='TuckER',
val_iterations=200,
stats_iterations=200):
self.learning_rate = learning_rate
self.ent_vec_dim = ent_vec_dim
self.rel_vec_dim = rel_vec_dim
self.num_iterations = num_iterations
self.batch_size = batch_size
self.decay_rate = decay_rate
self.label_smoothing = label_smoothing
self.cuda = cuda
self.loss = loss
self.optimizer = optimizer
self.reg = reg
self.mu = mu
self.c = c
self.model = model
self.val_iterations = val_iterations
self.stats_iterations = stats_iterations
self.kwargs = {
"input_dropout": input_dropout,
"hidden_dropout1": hidden_dropout1,
"hidden_dropout2": hidden_dropout2,
"loss": loss,
}
def adjust_learning_rate(self, epoch, optimizer):
"""Sets the learning rate to the initial LR decayed by 10 every 50 epochs"""
lr = args.lr * (0.1**(epoch // 50))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return lr
def get_data_idxs(self, data):
data_idxs = [(self.entity_idxs[data[i][0]], self.relation_idxs[data[i][1]], \
self.entity_idxs[data[i][2]]) for i in range(len(data))]
return data_idxs
def get_er_vocab(self, data):
er_vocab = defaultdict(list)
for triple in data:
er_vocab[(triple[0], triple[1])].append(triple[2])
return er_vocab
def get_batch(self, er_vocab, er_vocab_pairs, idx):
batch = er_vocab_pairs[idx:idx + self.batch_size]
targets = np.zeros((len(batch), len(d.entities)))
for idx, pair in enumerate(batch):
targets[idx, er_vocab[pair]] = 1.
targets = torch.FloatTensor(targets)
if self.cuda:
targets = targets.cuda()
return np.array(batch), targets
def evaluate(self, model, data, it):
best_mrr = 0
hits = []
ranks = []
for i in range(10):
hits.append([])
test_data_idxs = self.get_data_idxs(data)
er_vocab = self.get_er_vocab(self.get_data_idxs(d.data))
print("Number of data points: %d" % len(test_data_idxs))
for i in range(0, len(test_data_idxs), self.batch_size):
data_batch, eval_targets = self.get_batch(er_vocab, test_data_idxs,
i)
e1_idx = torch.tensor(data_batch[:, 0])
r_idx = torch.tensor(data_batch[:, 1])
e2_idx = torch.tensor(data_batch[:, 2])
if self.cuda:
e1_idx = e1_idx.cuda()
r_idx = r_idx.cuda()
e2_idx = e2_idx.cuda()
predictions = model.forward(e1_idx, r_idx, eval_targets)
for j in range(data_batch.shape[0]):
filt = er_vocab[(data_batch[j][0], data_batch[j][1])]
target_value = predictions[j, e2_idx[j]].item()
predictions[j, filt] = 0.0
predictions[j, e2_idx[j]] = target_value
_, sort_idxs = torch.sort(predictions, dim=1, descending=True)
sort_idxs = sort_idxs.cpu().numpy()
for j in range(data_batch.shape[0]):
rank = np.where(sort_idxs[j] == e2_idx[j].item())[0][0]
ranks.append(rank + 1)
for hits_level in range(10):
if rank <= hits_level:
hits[hits_level].append(1.0)
else:
hits[hits_level].append(0.0)
mrr = np.mean(1. / np.array(ranks))
print('Hits @10: {0}'.format(np.mean(hits[9])))
print('Hits @3: {0}'.format(np.mean(hits[2])))
print('Hits @1: {0}'.format(np.mean(hits[0])))
print('Mean rank: {0}'.format(np.mean(ranks)))
print('Mean reciprocal rank: {0}'.format(mrr))
wandb.log({'val_mean_rank': np.mean(ranks)}, step=it)
wandb.log({'val_mrr': mrr}, step=it)
if (mrr > best_mrr):
wandb.run.summary["best_mrr"] = mrr
best_mrr = mrr
def train_and_eval(self):
self.entity_idxs = {d.entities[i]: i for i in range(len(d.entities))}
self.idxs_entity = {i: d.entities[i] for i in range(len(d.entities))}
self.relation_idxs = {
d.relations[i]: i
for i in range(len(d.relations))
}
train_data_idxs = self.get_data_idxs(d.train_data)
print("Number of training data points: %d" % len(train_data_idxs))
if self.model == 'TuckER':
model = TuckER(d, self.ent_vec_dim, self.rel_vec_dim,
**self.kwargs)
elif self.model == 'RESCAL':
model = RESCAL(d, self.ent_vec_dim, self.rel_vec_dim,
**self.kwargs)
wandb.watch(model, log="all")
if self.cuda:
model.cuda()
model.init()
if self.optimizer == 'Adam':
opt = torch.optim.Adam(model.parameters(),
lr=self.learning_rate,
weight_decay=0.0)
elif self.optimizer == 'SGD':
opt = torch.optim.SGD(model.parameters(),
lr=self.learning_rate,
momentum=0.9)
elif self.optimizer == 'RDA':
print('Using RDA!')
opt = gRDA_momentum(model.parameters(),
lr=self.learning_rate,
c=self.c,
mu=self.mu,
momentum=0.9,
reg='l1')
elif self.optimizer == 'RDA_adam':
print('Using RDA_Adam!')
opt = gRDAAdam(model.parameters(),
lr=self.learning_rate,
c=self.c,
mu=self.mu,
reg='l1')
er_vocab = self.get_er_vocab(train_data_idxs)
er_vocab_pairs = list(er_vocab.keys())
print("Starting training...")
start_time = time.time()
for it in range(1, self.num_iterations + 1):
start_train = time.time()
model.train()
losses = []
np.random.shuffle(er_vocab_pairs)
for j in range(0, len(er_vocab_pairs), self.batch_size):
data_batch, targets = self.get_batch(er_vocab, er_vocab_pairs,
j)
e1_idx = torch.tensor(data_batch[:, 0])
r_idx = torch.tensor(data_batch[:, 1])
if self.cuda:
e1_idx = e1_idx.cuda()
r_idx = r_idx.cuda()
predictions = model.forward(e1_idx, r_idx, targets)
if self.label_smoothing:
targets = ((1.0 - self.label_smoothing) *
targets) + (1.0 / targets.size(1))
if self.kwargs['loss'] == 'CE':
loss = model.klloss(
F.log_softmax(predictions, dim=1),
F.normalize(targets.float(), p=1, dim=1))
else:
loss = model.loss(predictions, targets)
loss.backward()
opt.step()
opt.zero_grad()
losses.append(loss.item())
print('--' * 30)
print('Iteration {}'.format(it))
print('Total Time (h:m:s): {:2}'.format(
str(datetime.timedelta(seconds=int(time.time() -
start_time)))))
print('Iteration Time (h:m:s): {:2}'.format(
str(datetime.timedelta(seconds=int(time.time() -
start_train)))))
print('Mean loss: {}'.format(np.mean(losses)))
wandb.log({'loss': np.mean(losses)}, step=it)
if not it % self.val_iterations:
### Validation ###
model.eval()
with torch.no_grad():
print('++' * 20)
print("Validation:")
self.evaluate(model, d.valid_data, it)
if not it % self.stats_iterations:
pick_top_k(model.E, d.entity_ids_to_readable,
self.idxs_entity, wandb.run.id)
print('Sparsity (entity embeddings): {}'.format(
model.count_zero_weights_ent()))
wandb.log(
{'ent_spars': np.mean(model.count_zero_weights_ent())},
step=it)
print('Sparsity (relation embeddings): {}'.format(
model.count_zero_weights_rel()))
wandb.log(
{'rel_spars': np.mean(model.count_zero_weights_rel())},
step=it)
print('Sparsity (core tensor): {}'.format(
model.count_zero_weights_W()))
print('Negativity (entity embeddings): {}'.format(
model.count_negative_weights_ent()))
print('Negativity (relation embeddings): {}'.format(
model.count_negative_weights_rel()))
print('Negativity (core tensor): {}'.format(
model.count_negative_weights_W()))
e_dr = getDistRatio(model.E)
r_dr = getDistRatio(model.R)
print('DistRatio (entity embeddings): {}'.format(e_dr))
wandb.log({'ent_distratio': e_dr}, step=it)
print('DistRatio (relation embeddings): {}'.format(r_dr))
wandb.log({'rel_distratio': r_dr}, step=it)
print('##' * 20)
print("Test:")
start_test = time.time()
self.evaluate(model, d.test_data, it)
print('Test Time (h:m:s): {:2}'.format(
str(
datetime.timedelta(seconds=int(time.time() -
start_test)))))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
"--dataset",
type=str,
default="FB15k-237",
nargs="?",
help="Which dataset to use: FB15k, FB15k-237, NELL-995, WN18 or WN18RR.")
parser.add_argument("--loss",
type=str,
default="BCE",
nargs="?",
help="Which loss to use: BCE or CE.")
parser.add_argument("--optimizer",
type=str,
default="RDA",
nargs="?",
help="Which optimizer to use: Adam, SGD or RDA.")
parser.add_argument("--num_iterations",
type=int,
default=2400,
nargs="?",
help="Number of iterations.")
parser.add_argument("--batch_size",
type=int,
default=128,
nargs="?",
help="Batch size.")
parser.add_argument("--lr",
type=float,
default=0.0005,
nargs="?",
help="Learning rate.")
parser.add_argument("--dr",
type=float,
default=0.1,
nargs="?",
help="Decay rate.")
parser.add_argument("--edim",
type=int,
default=200,
nargs="?",
help="Entity embedding dimensionality.")
parser.add_argument("--rdim",
type=int,
default=200,
nargs="?",
help="Relation embedding dimensionality.")
parser.add_argument("--cuda",
type=bool,
default=True,
nargs="?",
help="Whether to use cuda (GPU) or not (CPU).")
parser.add_argument("--input_dropout",
type=float,
default=0.3,
nargs="?",
help="Input layer dropout.")
parser.add_argument("--hidden_dropout1",
type=float,
default=0.4,
nargs="?",
help="Dropout after the first hidden layer.")
parser.add_argument("--hidden_dropout2",
type=float,
default=0.5,
nargs="?",
help="Dropout after the second hidden layer.")
parser.add_argument("--label_smoothing",
type=float,
default=0.1,
nargs="?",
help="Amount of label smoothing.")
parser.add_argument("--mu",
type=float,
default=0.5,
nargs="?",
help="RDA mu")
parser.add_argument("--c",
type=float,
default=0.00005,
nargs="?",
help="RDA c")
parser.add_argument("--nowandb",
dest='nowandb',
action='store_true',
default=False,
help="Log wandb.")
parser.add_argument("--model",
type=str,
default="TuckER",
nargs="?",
help="TuckER or RESCAL.")
parser.add_argument("--val_iterations",
type=int,
default=200,
nargs="?",
help="Validate after n iterations.")
parser.add_argument("--stats_iterations",
type=int,
default=200,
nargs="?",
help="Validate after n iterations.")
args = parser.parse_args()
dataset = args.dataset
data_dir = "data/%s/" % dataset
torch.backends.cudnn.deterministic = True
seed = 20
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available:
torch.cuda.manual_seed_all(seed)
if args.nowandb:
os.environ['WANDB_MODE'] = 'dryrun'
wandb.init(project="nnskge")
wandb.config.update(args) # adds all of the arguments as config variables
d = Data(data_dir=data_dir, reverse=True)
experiment = Experiment(num_iterations=args.num_iterations,
batch_size=args.batch_size,
learning_rate=args.lr,
decay_rate=args.dr,
ent_vec_dim=args.edim,
rel_vec_dim=args.rdim,
cuda=args.cuda,
input_dropout=args.input_dropout,
hidden_dropout1=args.hidden_dropout1,
hidden_dropout2=args.hidden_dropout2,
label_smoothing=args.label_smoothing,
optimizer=args.optimizer,
loss=args.loss,
mu=args.mu,
c=args.c,
model=args.model,
val_iterations=args.val_iterations,
stats_iterations=args.stats_iterations)
experiment.train_and_eval()
print('#' * 40)
print("Finished!")