forked from uorclub/simulations
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathWhichPValuesCanYouExpect.R
41 lines (36 loc) · 1.91 KB
/
WhichPValuesCanYouExpect.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
#Load pwr package to easily calculate the statistical power
if(!require(pwr)){install.packages('pwr')}
library(pwr)
#Disable scientific notation (1.05e10)
options(scipen=999)
#Set number of simulations
nSims <- 100000 #number of simulated experiments
M<-106 #Mean IQ score in the sample (will be compared with 100 in a one-sample t-test)
n<-26 #set sample size
SD<-15 #SD of the simulated data
#With a mean difference of 6, and SD of 15, and a sample size of 26, the test has 50% power)
p <-numeric(nSims) #set up empty variable to store all simulated p-values
bars<-20
#Run simulation
for(i in 1:nSims){ #for each simulated experiment
x<-rnorm(n = n, mean = M, sd = SD) #Simulate data with specified mean, standard deviation, and sample size
z<-t.test(x, mu=100) #perform the t-test against mu (set to value you want to test against)
p[i]<-z$p.value #get the p-value and store it
}
#Check power by summing significant p-values and dividing by number of simulations
(sum(p < 0.05)/nSims) #power
#Calculate power formally by power analysis
power<-pwr.t.test(d=(M-100)/SD, n=n,sig.level=0.05,type="one.sample",alternative="two.sided")$power #determines M when power > 0. When power = 0, will set M = 100.
power
#Plot figure
#png(file="P-valueDist.png",width=4000,height=3000, , units = "px", res = 500)
op <- par(mar = c(5,7,4,4)) #change white-space around graph
hist(p, breaks=bars, xlab="P-values", ylab="number of p-values\n", axes=FALSE,
main=paste("P-value Distribution with",round(power*100, digits=1),"% Power"),
col="grey", xlim=c(0,1), ylim=c(0, nSims))
axis(side=1, at=seq(0,1, 0.1), labels=seq(0,1,0.1))
axis(side=2, at=seq(0,nSims, nSims/4), labels=seq(0,nSims, nSims/4), las=2)
abline(h=nSims/bars, col = "red", lty=3)
#dev.off()
#Š Daniel Lakens, 2016.
# This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. https://creativecommons.org/licenses/by-nc-sa/4.0/