-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocess.py
executable file
·514 lines (395 loc) · 18.7 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
from copy import deepcopy
from transformers import BertTokenizer
from lib.eval.eval import EvalEngine
from lib.keyword_parser.derivations import NL4DVDerivations
from lib.keyword_parser.lexicons import NL4DVLexicons
from lib.keyword_parser.parser import QueryKeywordParser
from parse_args import args
import math
import os
import json
import pickle
import random
from collections import namedtuple
import pandas as pd
from pandas import DataFrame
from lib.neural_parser.tokenizer import Tokenizer
from lib.neural_parser.labels import CLASSES
from lib.utils.csv_utils import *
from lib.utils.misc_utils import get_processed_data_path, get_train_val_test_file_name
from lib.utils.benchmark_utils import create_benchmark
from lib.utils.nlp_utils import standardize_neural
from lib.utils.preprocess_utils import read_spec_gt, filter_data, format_single_data, df_data
from lib.utils.vegalite_utils import parse_vl_spec
"""
This is the preprocessing file to generate training data for nvBench and also for our parser
"""
def generate_nv_bench_files():
random.seed = 233
benchmark_file = 'eval/benchmarks-chi21.csv'
model = 'ncnet' # ncnet, nvbench, bart
gt_path = 'eval/gt'
data_path = 'eval/data'
save_dir = '../nvBench/data/chi21'
sub_dataset = 'superstore'
# train_data = 'eval/datavis/train_held_out.txt'
# test_data = 'eval/datavis/test_held_out.txt'
# dev_data = 'eval/datavis/val_held_out.txt'
train_data = 'eval/datavis/train_{}.txt'.format(sub_dataset)
test_data = 'eval/datavis/test_{}.txt'.format(sub_dataset)
dev_data = 'eval/datavis/val_{}.txt'.format(sub_dataset)
nvbench_train = 'eval/nvbench/nvbench_train.csv'
nvbench_db_table_columns = json.load(open('eval/nvbench/nvbench_db_tables_columns.json', 'r'))
mix_nvbench_data = False
nvbench_only = True
assert (mix_nvbench_data & (model != 'nvbench')) or not mix_nvbench_data
data_info_cache = {}
nvbench_info_cache = {}
gt_cache = {}
BartDataEntry = namedtuple('BartDataEntry', ['id', 'db_id', 'chart', 'hardness', 'query', 'question', 'question_bart', 'vega_zero'])
DataEntry = namedtuple('DataEntry', ['id', 'db_id', 'chart', 'hardness', 'query', 'question', 'vega_zero'])
def read_nvbench_data_info(dataset_name):
if dataset_name not in nvbench_info_cache:
datainfo_str = dataset_name + ' '
datainfo_str += ' '.join([key + ' ' + ' '.join(columns) for key, columns in nvbench_db_table_columns[dataset_name].items()])
nvbench_info_cache[dataset_name] = datainfo_str
return nvbench_info_cache[dataset_name]
def read_data_info(dataset_name):
if dataset_name not in data_info_cache:
dataset_folder = dataset_name
if dataset_folder.lower() == 'movies':
dataset_folder = 'movies_chi21'
csv_file = '{}/{}/{}.csv'.format(data_path, dataset_folder, dataset_name.lower())
csv_dict = read_csv_to_dict(csv_file)
assert len(csv_dict) > 0
colnames = [c.lower() for c in csv_dict[0].keys()]
data_info_cache[dataset_name] = '{} {}'.format(dataset_name.lower(), ' '.join(colnames))
return data_info_cache[dataset_name]
def read_gt(gt_filename, file_type):
key = '{}.{}'.format(gt_filename, file_type)
if gt_cache.get(key) is None:
with open('{}/{}.{}'.format(gt_path, gt_filename, file_type)) as f:
gt = f.read().strip()
gt_cache[key] = gt
return gt_cache[key]
def write_benchmark(benchmark_data, data, mode='train'):
output_data = []
for entry in benchmark_data:
# if entry['dataset'] != sub_dataset:
# continue
if entry['id'] not in data:
continue
if entry['query-fixed'] == "":
query = entry['query']
else:
query = entry['query-fixed']
if 'Horespower' in query:
query = query.replace('Horespower', 'Horsepower')
if model == 'bart':
# here we need to prepare the dataset information, with the following format:
# dbname column_names <SEP> NL query
query_bart = '{} <SEP> {}'.format(read_data_info(entry['data']), query)
else:
query_bart = ""
vql = read_gt(entry['gtname'], 'vql')
vega_zero = read_gt(entry['gtname'], 'vegazero')
if 'scatter' in entry['visId'].lower() or 'histogram' in entry['visId'].lower():
chart = 'Scatter'
elif 'bar' in entry['visId'].lower():
chart = 'Bar'
elif 'line' in entry['visId'].lower():
chart = 'Line'
else:
raise Exception
if entry['data'].lower() == 'movies':
db_id = 'movies_chi21'
else:
db_id = entry['data'].lower()
if model == 'bart':
output_data.append(BartDataEntry(entry['id'], db_id, chart, 'Easy', vql, query, query_bart, vega_zero)._asdict())
else:
output_data.append(DataEntry(entry['id'], db_id, chart, 'Easy', vql, query, vega_zero)._asdict())
if (mix_nvbench_data or nvbench_only) and mode == 'train':
# first duplicate the chi training data 10 times
duplicated_train_data = []
if mix_nvbench_data:
for i in range(10):
for d in output_data:
new_d = deepcopy(d)
new_d['id'] = '{}_{}'.format(d['id'], i)
duplicated_train_data.append(new_d)
nvbench_data = read_csv_to_dict(nvbench_train)
# clean nvbench data
new_nvbench_data = []
for i, d in enumerate(nvbench_data):
new_d = {'id': 'nvbench_{}'.format(i)}
filter_old_d = dict([(key, value) for key, value in d.items() if key != 'tvBench_id'])
new_d.update(filter_old_d)
# d['id'] = 'nvbench_{}'.format(i)
# del d['tvBench_id']
if model == 'bart':
new_d['question_bart'] = '{} <SEP> {}'.format(read_nvbench_data_info(d['db_id']), d['question'])
new_nvbench_data.append(new_d)
output_data = new_nvbench_data + duplicated_train_data
# shuffle the data
random.shuffle(output_data)
if not os.path.exists(save_dir):
os.mkdir(save_dir)
if model == 'bart':
if mix_nvbench_data:
save_dict_to_csv('{}/chi21_nvbench_{}_{}_{}_flat.txt'.format(save_dir, sub_dataset, mode, model), output_data)
else:
save_dict_to_csv('{}/chi21_{}_{}_{}_flat.txt'.format(save_dir, sub_dataset, mode, model), output_data)
else:
if mix_nvbench_data:
save_dict_to_csv('{}/chi21_nvbench_{}_{}_flat.txt'.format(save_dir, sub_dataset, mode), output_data)
elif nvbench_only:
save_dict_to_csv('{}/chi21_nvbench_only_{}_{}_flat.txt'.format(save_dir, sub_dataset, mode), output_data)
else:
save_dict_to_csv('{}/chi21_{}_{}_flat.txt'.format(save_dir, sub_dataset, mode), output_data)
benchmark_data = read_csv_to_dict(benchmark_file)
train_data = convert_list_data_to_dict_data(read_csv_to_dict(train_data), 'id')
test_data = convert_list_data_to_dict_data(read_csv_to_dict(test_data), 'id')
dev_data = convert_list_data_to_dict_data(read_csv_to_dict(dev_data), 'id')
write_benchmark(benchmark_data, train_data, 'train')
write_benchmark(benchmark_data, test_data, 'test')
write_benchmark(benchmark_data, dev_data, 'dev')
def generate_spec_ground_truth():
gt_dir = 'eval/gt'
for root, _, files in os.walk(gt_dir):
for fn in files:
if not fn.endswith('vl.json'):
continue
fn_new_name = "{}.spec".format(fn.split('.')[0])
fpath = os.path.join(root, fn)
print("translating {}...".format(fn))
with open(fpath, 'r') as f:
vl_spec = json.load(f)
print("vl_spec:", vl_spec)
parsed_spec = parse_vl_spec(vl_spec)
with open("{}/{}".format(gt_dir, fn_new_name), 'w+') as f:
f.write(','.join(parsed_spec))
def generate_training_data(args):
eval_dir = 'eval'
gt_dir = '{}/{}'.format(eval_dir, 'gt')
output_dir = '{}/{}'.format(eval_dir, 'datavis')
field_correct = 0
field_containment = 0
qparser = QueryKeywordParser(NL4DVLexicons(), NL4DVDerivations())
def generate_formatted_data(data: List[Dict], oracle_field_test=True) -> List[Dict]:
nonlocal field_correct, field_containment
formatted_data = []
for d in data:
gtname = '{}.spec'.format(d['gtname']) if 'gtname' in d else '{}-{}.spec'.format(d['data'], d['id'])
all_fields, gt = read_spec_gt(gt_dir, gtname, args.bert_model)
if not oracle_field_test:
benchmark = create_benchmark(d, 'chi21')
benchmark.data, _, _ = EvalEngine().get_data(benchmark, mode='synth')
parsed_fields = qparser.parse(benchmark, field_only=True)
parsed_fields_tmp = [item[6:-1] for item in parsed_fields]
all_fields_tmp = all_fields[:-1]
print("parsed_fields:", parsed_fields_tmp)
print("all_fields:", all_fields_tmp)
# assert False
if set(parsed_fields_tmp) == set(all_fields_tmp):
field_correct += 1
if set(all_fields_tmp).issubset(set(parsed_fields_tmp)):
field_containment += 1
formatted_data.append(format_single_data(d, parsed_fields, (all_fields, gt), model_name=args.bert_model))
else:
formatted_data.append(format_single_data(d, None, (all_fields, gt), model_name=args.bert_model))
return formatted_data
# read two dataset
chi_21_data = filter_data(read_csv_to_dict('{}/benchmarks-chi21.csv'.format(eval_dir))) # 75-25 split
nl4dv_data = filter_data(read_csv_to_dict('{}/benchmarks-nl4dv.csv'.format(eval_dir))) # all of them use for training
print('filtered chi21 size: ', len(chi_21_data))
print('filtered nl4dv size: ', len(nl4dv_data))
# split chi_21_data
if args.held_out:
# all_data = chi_21_data + nl4dv_data
# filter out car dataset as the validation + train data
val_test = []
train = []
for d in chi_21_data:
if d['data'].lower() == args.test_set:
val_test.append(d)
else:
train.append(d)
for d in nl4dv_data:
if not d['data'].lower() == args.test_set:
train.append(d)
# shuffle the data
random.shuffle(val_test)
random.shuffle(train)
# pick out 10% of car dataset for validation
val_len = math.floor(len(val_test) * 0.1)
val = val_test[:val_len]
test = val_test[(val_len + 1):]
else:
random.shuffle(chi_21_data)
train_len = math.floor(len(chi_21_data) * 0.75)
chi_21_train = chi_21_data[:train_len]
train_val = chi_21_train + nl4dv_data
random.shuffle(train_val)
train_len = math.floor(len(train_val) * 0.95)
train = train_val[:train_len]
val = train_val[(train_len + 1):]
test = chi_21_data[(train_len + 1):]
print("train size: ", len(train))
print("val size: ", len(val))
print('test size: ', len(test))
# read gt for each instance and create a new data to store at the output dir
if not os.path.exists(output_dir):
os.mkdir(output_dir)
train_file_name, val_file_name, test_file_name = get_train_val_test_file_name(args)
train_formatted = generate_formatted_data(train, oracle_field_test=True)
save_dict_to_csv('{}/{}'.format(output_dir, train_file_name), train_formatted)
val_formatted = generate_formatted_data(val, oracle_field_test=True)
save_dict_to_csv('{}/{}'.format(output_dir, val_file_name), val_formatted)
test_formatted = generate_formatted_data(test, oracle_field_test=args.oracle_field_test)
save_dict_to_csv('{}/{}'.format(output_dir, test_file_name), test_formatted)
if not args.oracle_field_test:
print("field_prediction acc:", field_correct / len(test_formatted))
print("field_prediction containment acc:", field_containment / len(test_formatted))
# prepare pickle file of dataframe to be read directly
tokenizer = Tokenizer(args.bert_model)
dataset = {'train': df_data(args, train_formatted, tokenizer),
'val': df_data(args, val_formatted, tokenizer),
'test': df_data(args, test_formatted, tokenizer)}
out_pkl = get_processed_data_path(args)
with open(out_pkl, 'wb') as f:
pickle.dump(dataset, f)
print('Processed data dumped to {}'.format(out_pkl))
# synth_eval_engine.save_cache()
def generate_training_data_prev(args):
eval_dir = 'eval'
gt_dir = '{}/{}'.format(eval_dir, 'gt')
output_dir = '{}/{}'.format(eval_dir, 'datavis')
gt_cache = {}
def read_spec_gt(fname: str) -> dict:
def get_spec_type(gt_split, spec_type):
if spec_type == 'plot':
spec = [s for s in gt_split if s.startswith('plot(')][0]
spec = spec[(spec.find("(") + 1):spec.find(")")].lower()
else:
spec = [s for s in gt_split if s.startswith('{}('.format(spec_type))]
if len(spec) == 0:
spec = 'null'
else:
spec = spec_type
spec = CLASSES[spec_type].index(spec)
return spec
# print('fname:', fname)
if fname not in gt_cache:
with open('{}/{}'.format(gt_dir, fname), 'r') as f:
gt_str = f.read().strip()
# print('gt_str:', gt_str)
gt_split = gt_str.split(',')
all_spec = dict([(key, get_spec_type(gt_split, key)) for key in CLASSES.keys()])
gt_cache[fname] = all_spec
return gt_cache[fname]
def filter_data(data: List[Dict]) -> List[Dict]:
if 'not supported' not in data[0]:
return data
new_data = [d for d in data if not (
'rect' in d['not supported'] or 'pie' in d['not supported'] or 'strip' in d['not supported'] or 'box' in d['not supported'] or 'table' in d['not supported'] or '?' in d[
'labeled'])]
return new_data
def generate_formatted_data(data: List[Dict]) -> List[Dict]:
formatted_data = []
for d in data:
# print(d)
id = d['id']
data_name = d['data']
query = standardize_neural(d['query']) if d['query-fixed'] == '' else standardize_neural(d['query-fixed'])
gtname = '{}.spec'.format(d['gtname']) if 'gtname' in d else '{}-{}.spec'.format(d['data'], d['id'])
gt = read_spec_gt(gtname)
formatted_data.append(dict(**{'id': id, 'data': data_name, 'query': query}, **gt))
return formatted_data
def df_data(data: List[Dict], tokenizer) -> DataFrame:
for d in data:
d['encoding'] = tokenizer.encode_plus(
d['query'],
add_special_tokens=True,
max_length=args.input_dim,
return_token_type_ids=False,
padding='max_length',
return_attention_mask=True,
return_tensors='pt'
)
return pd.DataFrame(data)
# read two dataset
chi_21_data = filter_data(read_csv_to_dict('{}/benchmarks-chi21.csv'.format(eval_dir))) # 75-25 split
nl4dv_data = filter_data(read_csv_to_dict('{}/benchmarks-nl4dv.csv'.format(eval_dir))) # all of them use for training
print('filtered chi21 size: ', len(chi_21_data))
print('filtered nl4dv size: ', len(nl4dv_data))
# split chi_21_data
if args.held_out:
# all_data = chi_21_data + nl4dv_data
# filter out car dataset as the validation + train data
val_test = []
train = []
for d in chi_21_data:
if d['data'].lower() == 'cars':
val_test.append(d)
else:
train.append(d)
for d in nl4dv_data:
if not d['data'].lower() == 'cars':
train.append(d)
# shuffle the data
random.shuffle(val_test)
random.shuffle(train)
# pick out 10% of car dataset for validation
val_len = math.floor(len(val_test) * 0.1)
val = val_test[:val_len]
test = val_test[(val_len + 1):]
else:
random.shuffle(chi_21_data)
train_len = math.floor(len(chi_21_data) * 0.75)
chi_21_train = chi_21_data[:train_len]
train_val = chi_21_train + nl4dv_data
random.shuffle(train_val)
train_len = math.floor(len(train_val) * 0.95)
train = train_val[:train_len]
val = train_val[(train_len + 1):]
test = chi_21_data[(train_len + 1):]
print("train size: ", len(train))
print("val size: ", len(val))
print('test size: ', len(test))
# read gt for each instance and create a new data to store at the output dir
if not os.path.exists(output_dir):
os.mkdir(output_dir)
train_file_name, val_file_name, test_file_name = get_train_val_test_file_name(args)
train_formatted = generate_formatted_data(train)
save_dict_to_csv('{}/{}'.format(output_dir, train_file_name), train_formatted)
val_formatted = generate_formatted_data(val)
save_dict_to_csv('{}/{}'.format(output_dir, val_file_name), val_formatted)
test_formatted = generate_formatted_data(test)
save_dict_to_csv('{}/{}'.format(output_dir, test_file_name), test_formatted)
# prepare pickle file of dataframe to be read directly
tokenizer = BertTokenizer.from_pretrained(args.bert_model)
dataset = {'train': df_data(train_formatted, tokenizer),
'val': df_data(val_formatted, tokenizer),
'test': df_data(test_formatted, tokenizer)}
out_pkl = get_processed_data_path(args)
with open(out_pkl, 'wb') as f:
pickle.dump(dataset, f)
print('Processed data dumped to {}'.format(out_pkl))
if __name__ == '__main__':
# parser = argparse.ArgumentParser(description='dummy parser')
# args = parser.parse_args()
# args.seed = 233
# args.bert_model = 'bert-large-uncased'
# args.input_dim = 100
# args.dataset = 'datavis'
# args.data_path = 'eval/datavis'
# args.held_out = True
# args.max_field_num = 10
# args.max_token_num_per_field = 5
# args.oracle_field_test = False
print(args)
# random.seed(args.seed)
generate_nv_bench_files()
# generate_spec_ground_truth()
# generate_training_data(args)