-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
214 lines (141 loc) · 6.14 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import torch
import torch.nn as nn
import numpy as np
from torch.optim import lr_scheduler
from utils.cityscapes import get_data_loader
from utils.meters import TimeMeter, AvgMeter
from utils.loss import OhemCELoss
from tqdm import tqdm
from utils.metrics import Evaluator
import torch.nn.functional as F
import torchvision.transforms as T
from utils.cityscapes import get_data_loader
from utils.evaluate import eval_model
import segmentation_models_pytorch as smp
from models.bisenetv2 import BiSeNetV2
import numpy as np
import torch.distributed as dist
from utils.lr_scheduler import WarmupPolyLrScheduler
from torch.utils.tensorboard.writer import SummaryWriter
def train_per_epoch(model, criterion, optimizer, scheduler, dataloader, device):
# total_iter = len(dataloader) * dataloader.batch_size * epoch
model.train()
criteria_pre = criterion
criteria_aux = [criterion for _ in range(4)]
for it, (image, target) in tqdm(enumerate(dataloader)):
image , target = image.to(device, dtype=torch.float), target.to(device)
target = torch.squeeze(target, 1)
logits, *logits_aux = model(image)
loss_pre = criteria_pre(logits, target)
loss_aux = [crit(lgt, target) for crit, lgt in zip(criteria_aux, logits_aux)]
loss = loss_pre + sum(loss_aux)
optimizer.zero_grad()
loss.backward()
optimizer.step()
torch.cuda.synchronize()
scheduler.step()
# total_iter += dataloader.batch_size
print(optimizer.param_groups[0]['lr'])
return
def validate_model(model, valid_loader, device):
model.eval()
evaluator = Evaluator(19)
evaluator.reset()
for _,(image, target) in enumerate(tqdm(valid_loader)):
# 2.1. Get images and groundtruths (i.e. a batch), then send them to
# the device every iteration
image , target = image.to(device, dtype=torch.float), target.to(device)
target = torch.squeeze(target, 1)
image = T.Resize((512,1024))(image)
with torch.no_grad():
output = model(image)[0]
seg_map = F.interpolate(output, size=(1024,2048),
mode='bilinear', align_corners=True)
# 2.3. Compute the batch loss
seg_map = torch.argmax(seg_map, dim=1)
seg_map = seg_map.cpu().detach().numpy()
target = target.cpu().detach().numpy()
evaluator.add_batch(target,seg_map)
Acc = evaluator.Pixel_Accuracy()
mIoU = evaluator.Mean_Intersection_over_Union()
f1 = evaluator.F1_score()
return mIoU, Acc, f1
def get_check_point(pretrained_pth, net, optimizer,scheduler, device):
checkpoint = torch.load(pretrained_pth, map_location=device)
model_state_dict = checkpoint['model_state_dict']
optimizer_state_dict = checkpoint['optimizer_state_dict']
epoch = checkpoint['epoch']
max_miou = checkpoint['max_miou']
net.load_state_dict(model_state_dict)
net.to(device)
optimizer.load_state_dict(optimizer_state_dict)
scheduler.load_state_dict(checkpoint['scheduler'])
is_dist = dist.is_initialized()
if is_dist:
local_rank = dist.get_rank()
net = nn.parallel.DistributedDataParallel(
net,
device_ids=[local_rank, ],
output_device=local_rank
)
return net, optimizer, scheduler, epoch, max_miou
if __name__== "__main__":
from tqdm import tqdm
import torchvision.transforms as T
import torch
import matplotlib.pyplot as plt
from torch.utils.tensorboard.writer import SummaryWriter
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
np.random.seed(50)
torch.manual_seed(50)
if torch.cuda.is_available():
torch.cuda.manual_seed(50)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
num_epochs = 1000
max_acc = 0
patience = 100
not_improved_count = 0
batch_size = 8
val_loader = get_data_loader(datapth='cityscapes',annpath='cityscapes/val.txt',batch_size=batch_size,mode='val')
train_loader = get_data_loader(datapth='cityscapes',annpath='cityscapes/train.txt',batch_size=batch_size,mode='train')
net = BiSeNetV2(n_classes= 19).to(device)
criterion = OhemCELoss(thresh=0.7)
optimizer = torch.optim.SGD(net.parameters(),lr = 1e-2,momentum=0.9)
lr_schdr = WarmupPolyLrScheduler(optimizer, power=0.9,
max_iter=150000, warmup_iter=1000,
warmup_ratio=0.1, warmup='exp', last_epoch=-1,)
net, optimizer,lr_scheduler,epoch, max_miou = get_check_point(
'./pretrained_models/BiSeNetv2_epoch_371_acc_0.5997.pt',
net,
optimizer,
lr_schdr,
device
)
writer = SummaryWriter('experiment')
for epoch in range(epoch+1, num_epochs):
train_per_epoch(net, criterion, optimizer, lr_schdr, train_loader, device)
# val_iou= eval_model(net, val_loader)
val_iou, val_f1, val_acc = validate_model(net, val_loader, device)
print('Epoch: {}'.format(epoch))
print('Valid_f1: {}'.format(val_f1))
print('Valid_iou: {:.4f}'.format(val_iou))
writer.add_scalar("mIoU", val_iou, epoch)
writer.add_scalar("mDice",val_f1,epoch)
if val_iou > max_miou:
best_checkpoint = {
'epoch': epoch,
'model_state_dict': net.module.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'max_miou': val_iou,
'scheduler': lr_schdr.state_dict()
}
path = './pretrained_models/BiSeNetv2_epoch_' + str(epoch) + '_acc_{0:.4f}'.format(val_iou)+'.pt'
torch.save(best_checkpoint, path)
max_miou = val_iou
not_improved_count = 0
else:
not_improved_count+=1
if not_improved_count >=patience:
break
writer.close()