-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinfer_importance.py
208 lines (172 loc) · 7.44 KB
/
infer_importance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import torch
from fastcore.basics import true
import torch
import argparse
import os
import matplotlib.pyplot as plt
import torchvision.utils
from PIL import Image
import numpy as np
import timm
from models.clsnetwork import EventNetwork, EventCnnLstm
from models.siamesenetwork import SiameseNetwork
import cv2
import json
import torchvision.transforms as T
# ----------------------------------------------------------------------
# Parameters
parser = argparse.ArgumentParser(
description='PETA: Photo album Event recognition using Transformers Attention.')
parser.add_argument('--model_path', type=str,
default='/vinai/vietlq4/Event/checkpoints/importance/version_60/checkpoints/best-epoch=02-val_loss=5.46.ckpt')
parser.add_argument('--album_path', type=str,
default='./albums/Birthday/0_55737440@N02')
# /Graduation') # /0_92024390@N00')
parser.add_argument('--event_type_pth', type=str,
default='/vinai/vietlq4/dataset/CUFED/event_type.json')
parser.add_argument('--val_dir', type=str, default='./albums')
parser.add_argument('--num_classes', type=int, default=23)
parser.add_argument('--model_name', type=str, default='mtresnetaggregate')
parser.add_argument('--transformers_pos', type=int, default=1)
parser.add_argument('--input_size', type=int, default=224)
parser.add_argument('--transform_type', type=str, default='squish')
parser.add_argument('--album_sample', type=str, default='rand_permute')
parser.add_argument('--dataset_path', type=str, default='./data/ML_CUFED')
parser.add_argument('--dataset_type', type=str, default='ML_CUFED')
parser.add_argument('--path_output', type=str, default='./outputs')
parser.add_argument('--use_transformer', type=int, default=1)
parser.add_argument('--album_clip_length', type=int, default=32)
parser.add_argument('--batch_size', type=int, default=32)
parser.add_argument('--num_workers', type=int, default=0)
parser.add_argument('--top_k', type=int, default=3)
parser.add_argument('--threshold', type=float, default=0.5)
parser.add_argument('--remove_model_jit', type=int, default=None)
test_transform = T.Compose([
T.Resize((224, 224)),
T.ToTensor(),
T.Normalize(
mean=(0.485, 0.456, 0.406),
std=(0.229, 0.224, 0.225)
),
])
def get_album(args):
files = os.listdir(args.album_path)
album_name = args.album_path.rsplit('/', 1)[1]
cls_dict = json.load(open(args.event_type_pth))
event = cls_dict[album_name]
n_files = len(files)
print(n_files)
idx_fetch = np.linspace(0, n_files-1, n_files, dtype=int)
tensor_batch = torch.zeros(
len(idx_fetch), args.input_size, args.input_size,3)
for i, id in enumerate(idx_fetch):
im = Image.open(os.path.join(args.album_path, files[id])).convert('RGB')
im_resize = im.resize((args.input_size, args.input_size))
np_img = np.array(im_resize, dtype=np.uint8)
tensor_batch[i] = torch.from_numpy(np_img).float() / 255.0
tensor_batch = tensor_batch.permute(0, 3, 1, 2).cuda() # HWC to CHW
# tensor_images = torch.unsqueeze(tensor_images, 0).cuda()
montage = torchvision.utils.make_grid(tensor_batch).permute(1, 2, 0).cpu()
return tensor_batch, montage, files
def plot_image(i, predictions_array, true_label, img, class_names):
img = img[i]
plt.grid(False)
plt.xticks([])
plt.yticks([])
plt.imshow(img, cmap=plt.cm.binary)
predicted_label = np.argmax(predictions_array)
plt.xlabel("{} {:2.0f}% ({threshold})".format(class_names[predicted_label],
100*np.max(predictions_array),
true_label))
def inference(tensor_batch, model, classes_list, args):
out = model(tensor_batch)
print(out.shape)
output = torch.squeeze(torch.sigmoid(model(tensor_batch)))
np_output = output.cpu().detach().numpy()
idx_sort = np.argsort(-np_output)
# Top-k
detected_classes = np.array(classes_list)[idx_sort][: args.top_k]
scores = np_output[idx_sort][: args.top_k]
# Threshold
idx_th = scores > args.threshold
print(detected_classes[idx_th], scores[idx_th])
return detected_classes[idx_th], scores[idx_th]
def load_model(net, path):
if path is not None and path.endswith(".ckpt"):
state_dict = torch.load(path, map_location='cpu')
if "state_dict" in state_dict:
state_dict = state_dict["state_dict"]
compatible_state_dict = {}
for k, v in state_dict.items():
if k.startswith('net.'):
compatible_state_dict[k.replace('net.', '')] = v
net.load_state_dict(compatible_state_dict)
return net
def main(classes_list):
args = parser.parse_args()
# net = EventNetwork(encoder_name='resnet101', num_classes=args.num_classes).cuda()
# net.eval()
net = SiameseNetwork().cuda()
net.eval()
net = load_model(net, args.model_path)
tensor_batch, montage, files = get_album(args)
print(tensor_batch.shape)
output = torch.squeeze(torch.sigmoid(net.forward_once(tensor_batch)))
# output = net(tensor_batch)
print(output)
# output = torch.mean(output, dim=0)
np_output = output.cpu().detach().numpy()
# np_output[np_output >= 0.5] = 1
# np_output[np_output < 0.5] = 0
# predict_label = np.where(np_output == 1)[1]
# print(predict_label)
# batch = tensor_batch.permute(0,2, 3, 1).cpu()
# plt.figure(figsize=(len(batch), len(batch)))
# for i in range(len(batch)):
# plt.subplot(6, 6, i+1)
# plot_image(i, np_output[i], event, batch, classes_list)
# plt.tight_layout()
# plt.savefig('result.png')
# print(np_output)
# idx_sort = np.argsort(-np_output)
# # Top-k
# detected_classes = np.array(classes_list)[idx_sort][: args.top_k]
# scores = np.sort(np_output)[:,::-1][:,:args.top_k]
ids = np.argpartition(np_output, -4)[-4:]
for id in ids:
print(files[id])
# print(scores)
# # Threshold
# idx_th = scores > args.threshold
# print(detected_classes[idx_th], scores[idx_th])
# tags, confs = inference(tensor_batch, net, classes_list, args)
# # Visualization
# display_image(montage, tags, 'result.jpg', os.path.join(
# args.path_output, args.album_path).replace("./albums", ""))
# idx_sort = np.argsort(-np_output)
# # # Top-k
# detected_classes = np.array(classes_list)[idx_sort][:,:args.top_k]
# print(detected_classes.shape)
# scores = np.sort(np_output)[:,::-1][:,:args.top_k]
# print(scores.shape)
# # # Threshold
# idx_th = scores >= 0.5
# print(detected_classes[idx_th])
# print(scores[idx_th])
def display_image(im, tags, filename, path_dest):
if not os.path.exists(path_dest):
os.makedirs(path_dest)
plt.figure()
plt.imshow(im)
plt.axis('off')
plt.axis('tight')
plt.rcParams["axes.titlesize"] = 16
plt.title("Predicted classes: {}".format(tags))
plt.savefig(os.path.join(path_dest, filename))
if __name__ == '__main__':
classes_list = ['Architecture', 'BeachTrip', 'Birthday', 'BusinessActivity',
'CasualFamilyGather', 'Christmas', 'Cruise', 'Graduation', 'GroupActivity',
'Halloween', 'Museum', 'NatureTrip', 'PersonalArtActivity',
'PersonalMusicActivity', 'PersonalSports', 'Protest', 'ReligiousActivity',
'Show', 'Sports', 'ThemePark', 'UrbanTrip', 'Wedding', 'Zoo']
main(classes_list)