-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
178 lines (140 loc) · 5.96 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import torch
import numpy as np
from dataset import *
from datasets.samplers import OrderedSampler
from functools import partial
import pytorch_lightning as pl
from pytorch_lightning.callbacks import ModelCheckpoint, LearningRateMonitor
from pytorch_lightning.callbacks.early_stopping import EarlyStopping
from pytorch_lightning.loggers import TensorBoardLogger
from options.train_options import TrainOptions
from eventModule import EventModule
from torchvision import transforms as T
import random
from PIL import ImageDraw
from randaugment import RandAugment
class CutoutPIL(object):
def __init__(self, cutout_factor=0.5):
self.cutout_factor = cutout_factor
def __call__(self, x):
img_draw = ImageDraw.Draw(x)
h, w = x.size[0], x.size[1] # HWC
h_cutout = int(self.cutout_factor * h + 0.5)
w_cutout = int(self.cutout_factor * w + 0.5)
y_c = np.random.randint(h)
x_c = np.random.randint(w)
y1 = np.clip(y_c - h_cutout // 2, 0, h)
y2 = np.clip(y_c + h_cutout // 2, 0, h)
x1 = np.clip(x_c - w_cutout // 2, 0, w)
x2 = np.clip(x_c + w_cutout // 2, 0, w)
fill_color = (random.randint(0, 255), random.randint(
0, 255), random.randint(0, 255))
img_draw.rectangle([x1, y1, x2, y2], fill=fill_color)
return x
if __name__ == '__main__':
# Parse arguments
train_opt = TrainOptions().parse()
np.random.seed(train_opt.seed)
torch.manual_seed(train_opt.seed)
torch.cuda.manual_seed(train_opt.seed)
train_opt.phase = 'train'
val_opt = TrainOptions().parse()
val_opt.phase = 'val'
val_opt.batch_size = 1
# Create SegModule
eventModule = EventModule(train_opt, val_opt)
# Load pretrained weight of model (for old version)
if train_opt.pretrained is not None:
print("Loading pretrained model from", train_opt.pretrained)
state_dict = torch.load(train_opt.pretrained, map_location='cpu')
if "state_dict" in state_dict:
state_dict = state_dict["state_dict"]
state_dict = {k.replace("net.", ""): v for k,
v in state_dict.items()}
eventModule.net.load_state_dict(state_dict)
# Save checkpoint callback
checkpoint_callback = ModelCheckpoint(
monitor='mAP',
filename='best-{epoch:02d}-{mAP:.2f}',
# monitor='metrics_iou',
# filename='best-{epoch:02d}-{metrics_iou:.2f}',
save_last=True,
save_top_k=3,
verbose=True,
mode='max'
)
# Early stopping callback
early_stopping_callback = EarlyStopping(
monitor='mAP',
# monitor='metrics_iou',
min_delta=0.00,
patience=train_opt.patience,
verbose=False,
mode='max'
)
# Logging learning rate callback
lr_monitor = LearningRateMonitor(logging_interval='epoch')
# Create Logger
logger = TensorBoardLogger(
save_dir=train_opt.save_dir, name=train_opt.name)
# Create Trainer
trainer = pl.Trainer(gpus=train_opt.gpus,
resume_from_checkpoint=train_opt.resume,
auto_lr_find=True,
accelerator=train_opt.accelerator,
logger=logger,
max_epochs=train_opt.max_epoch,
replace_sampler_ddp=False,
callbacks=[early_stopping_callback, checkpoint_callback, lr_monitor])
train_transform = T.Compose([
# T.RandomResizedCrop((224, 224)),
# T.RandomRotation(degrees=30.),
# T.RandomPerspective(distortion_scale=0.4),
T.Resize((224, 224)),
# T.RandomHorizontalFlip(p=0.5),
# T.RandomVerticalFlip(p=0.5),
CutoutPIL(cutout_factor=0.5),
RandAugment(),
T.ToTensor(),
# T.Normalize(
# mean=(0.485, 0.456, 0.406),
# std=(0.229, 0.224, 0.225)
# ),
])
val_transform = T.Compose([
T.Resize((224, 224)),
T.ToTensor(),
# T.Normalize(
# mean=(0.485, 0.456, 0.406),
# std=(0.229, 0.224, 0.225)
# ),
])
train_dataset = CUFEDImportanceDataset(data_path='../CUFED_split/images/train', album_list=train_opt.train_list,
transforms=train_transform, args=train_opt)
train_sampler = OrderSampler(train_dataset, args=train_opt)
def collate_fn(b): return fast_collate_1(b, train_opt.album_clip_length)
train_loader = data.DataLoader(train_dataset, batch_size=128, num_workers=4,
sampler=train_sampler, shuffle=False, drop_last=True, collate_fn=collate_fn)
val_dataset = AlbumsDataset(data_path='../CUFED_split/images/test', album_list=train_opt.val_list,
transforms=val_transform, args=train_opt)
# val_sampler = OrderSampler(val_dataset, args=train_opt)
val_loader = data.DataLoader(
val_dataset, batch_size=32, num_workers=4, shuffle=False)
# train_dataset = AlbumsDataset(
# train_opt.train_root, train_opt.train_list, transforms=train_transform, args=train_opt)
# # train_sampler = OrderedSampler(train_dataset, args=train_opt)
# train_loader = torch.utils.data.DataLoader(
# train_dataset, batch_size=train_opt.batch_size, shuffle=True, pin_memory=True,
# num_workers=train_opt.num_threads, drop_last=False)
# val_dataset = AlbumsDataset(
# train_opt.train_root, train_opt.val_list, transforms=val_transform, args=train_opt)
# # val_sampler = OrderedSampler(val_dataset, args=train_opt)
# val_loader = torch.utils.data.DataLoader(
# val_dataset, batch_size=val_opt.batch_size, shuffle=False, pin_memory=True,
# num_workers=train_opt.num_threads, drop_last=False)
# for i, (img, target) in enumerate(train_loader):
# print(img.shape)
# print(target.shape)
# # print(score.shape)
# break
trainer.fit(eventModule, train_loader, val_loader)