-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathtrain.py
105 lines (93 loc) · 5.52 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import os
import sys
import time
import random
import argparse
import itertools
import hickle
import torch
import torchvision.transforms as T
import cub2011
import cars196
import stanford_online_products
import inception_v1_googlenet
import resnet18
import resnet50
import model
import sampler
parser = argparse.ArgumentParser()
LookupChoices = type('', (argparse.Action, ), dict(__call__ = lambda a, p, n, v, o: setattr(n, a.dest, a.choices[v])))
parser.add_argument('--dataset', choices = dict(cub2011 = cub2011.CUB2011MetricLearning, cars196 = cars196.Cars196MetricLearning, stanford_online_products = stanford_online_products.StanfordOnlineProducts), default = cub2011.CUB2011MetricLearning, action = LookupChoices)
parser.add_argument('--base', choices = dict(inception_v1_googlenet = inception_v1_googlenet.inception_v1_googlenet, resnet18 = resnet18.resnet18, resnet50 = resnet50.resnet50), default = resnet50.resnet50, action = LookupChoices)
parser.add_argument('--model', choices = dict(liftedstruct = model.LiftedStruct, triplet = model.Triplet, tripletratio = model.TripletRatio, pddm = model.Pddm, untrained = model.Untrained, margin = model.Margin), default = model.Margin, action = LookupChoices)
parser.add_argument('--sampler', choices = dict(simple = sampler.simple, triplet = sampler.triplet, npairs = sampler.npairs), default = sampler.npairs, action = LookupChoices)
parser.add_argument('--data', default = 'data')
parser.add_argument('--log', default = 'data/log.txt')
parser.add_argument('--seed', default = 1, type = int)
parser.add_argument('--threads', default = 16, type = int)
parser.add_argument('--epochs', default = 100, type = int)
parser.add_argument('--batch', default = 128, type = int)
opts = parser.parse_args()
for set_random_seed in [random.seed, torch.manual_seed, torch.cuda.manual_seed_all]:
set_random_seed(opts.seed)
def recall(embeddings, labels, K = 1):
prod = torch.mm(embeddings, embeddings.t())
norm = prod.diag().unsqueeze(1).expand_as(prod)
D = norm + norm.t() - 2 * prod
knn_inds = D.topk(1 + K, dim = 1, largest = False)[1][:, 1:]
return (labels.unsqueeze(-1).expand_as(knn_inds) == labels[knn_inds.flatten()].view_as(knn_inds)).max(1)[0].float().mean()
base_model = opts.base()
base_model_weights_path = os.path.join(opts.data, opts.base.__name__ + '.h5')
if os.path.exists(base_model_weights_path):
base_model.load_state_dict({k : torch.from_numpy(v) for k, v in hickle.load(base_model_weights_path).items()})
normalize = T.Compose([
T.ToTensor(),
T.Lambda(lambda x: x * base_model.rescale),
T.Normalize(mean = base_model.rgb_mean, std = base_model.rgb_std),
T.Lambda(lambda x: x[[2, 1, 0], ...])
])
dataset_train = opts.dataset(opts.data, train = True, transform = transforms.Compose([
T.RandomSizedCrop(base_model.input_side),
T.RandomHorizontalFlip(),
normalize
]), download = True)
dataset_eval = opts.dataset(opts.data, train = False, transform = transforms.Compose([
T.Scale(256),
T.CenterCrop(base_model.input_side),
normalize
]), download = True)
adapt_sampler = lambda batch, dataset, sampler, **kwargs: type('', (torch.utils.data.Sampler, ), dict(__len__ = dataset.__len__, __iter__ = lambda _: itertools.chain.from_iterable(sampler(batch, dataset, **kwargs))))()
loader_train = torch.utils.data.DataLoader(dataset_train, sampler = adapt_sampler(opts.batch, dataset_train, opts.sampler), num_workers = opts.threads, batch_size = opts.batch, drop_last = True, pin_memory = True)
loader_eval = torch.utils.data.DataLoader(dataset_eval, shuffle = False, num_workers = opts.threads, batch_size = opts.batch, pin_memory = True)
model = opts.model(base_model, dataset_train.num_training_classes).cuda()
model_weights, model_biases, base_model_weights, base_model_biases = [[p for k, p in model.named_parameters() if p.requires_grad and ('bias' in k) == is_bias and ('base' in k) == is_base] for is_base in [False, True] for is_bias in [False, True]]
base_model_lr_mult = model.optimizer_params.pop('base_model_lr_mult', 1.0)
optimizer = model.optimizer([dict(params = base_model_weights, lr = base_model_lr_mult * model.optimizer_params['lr']), dict(params = base_model_biases, lr = base_model_lr_mult * model.optimizer_params['lr'], weight_decay = 0.0), dict(params = model_biases, weight_decay = 0.0)], **model.optimizer_params)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, **model.lr_scheduler_params)
log = open(opts.log, 'w', 0)
for epoch in range(opts.epochs):
scheduler.step()
model.train()
loss_all, norm_all = [], []
for batch_idx, batch in enumerate(loader_train if model.criterion is not None else []):
tic = time.time()
images, labels = [tensor.cuda() for tensor in batch]
loss = model.criterion(model(images), labels)
loss_all.append(float(loss))
optimizer.zero_grad()
loss.backward()
optimizer.step()
print('train {:>3}.{:05} loss {:.04f} hz {:.02f}'.format(epoch, batch_idx, loss_all[-1], len(images) / (time.time() - tic)))
log.write('loss epoch {}: {:.04f}\n'.format(epoch, torch.Tensor(loss_all or [0.0]).mean()))
if epoch < 10 or epoch % 5 == 0 or epoch == opts.epochs - 1:
model.eval()
embeddings_all, labels_all = [], []
for batch_idx, batch in enumerate(loader_eval):
tic = time.time()
images, labels = [tensor.cuda() for tensor in batch]
with torch.no_grad():
output = model(images)
embeddings_all.append(output.data.cpu())
labels_all.append(labels.data.cpu())
print('eval {:>3}.{:05} hz {:.02f}'.format(epoch, batch_idx, len(images) / (time.time() - tic)))
log.write('recall@1 epoch {}: {:.06f}\n'.format(epoch, recall(torch.cat(embeddings_all), torch.cat(labels_all))))