-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathhelpers.py
602 lines (503 loc) · 31.6 KB
/
helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
import os
import tensorflow as tf
import numpy as np
import math
import acquisitionScene
#import renderer
def preprocess(image):
with tf.name_scope("preprocess"):
# [0, 1] => [-1, 1]
return image * 2 - 1
def deprocess(image):
with tf.name_scope("deprocess"):
# [-1, 1] => [0, 1]
return (image + 1) / 2
#Log a tensor and normalize it.
def logTensor(tensor):
return (tf.log(tf.add(tensor,0.01)) - tf.log(0.01)) / (tf.log(1.01)-tf.log(0.01))
#Generate a random direction on the upper hemisphere with gaps on the top and bottom of Hemisphere. Equation is described in the Global Illumination Compendium (19a)
def tf_generate_normalized_random_direction(batchSize, nbRenderings, lowEps = 0.001, highEps = 0.05):
r1 = tf.random_uniform([batchSize, nbRenderings, 1], 0.0 + lowEps, 1.0 - highEps, dtype=tf.float32)
r2 = tf.random_uniform([batchSize, nbRenderings, 1], 0.0, 1.0, dtype=tf.float32)
r = tf.sqrt(r1)
phi = 2 * math.pi * r2
#min alpha = atan(sqrt(1-r^2)/r)
x = r * tf.cos(phi)
y = r * tf.sin(phi)
z = tf.sqrt(1.0 - tf.square(r))
finalVec = tf.concat([x, y, z], axis=-1) #Dimension here should be [batchSize,nbRenderings, 3]
return finalVec
#Remove the gamma of a vector
def removeGamma(tensor):
return tf.pow(tensor, 2.2)
#Add gamma to a vector
def addGamma(tensor):
return tf.pow(tensor, 0.4545)
def target_reshape(targetBatch):
#Here the target batch is [?(Batchsize), 4, 256, 256, 3] and we want to go to [?(Batchsize), 256,256,12]
return tf.concat(tf.unstack(targetBatch, axis = 1), axis = -1)
def target_deshape(target, nbTargets):
#ŧarget have shape [batchsize, 256,256,12] and we want [batchSize,4, 256,256,3]
target_list = tf.split(target, nbTargets, axis=-1)#4 * [batch, 256,256,3]
return tf.stack(target_list, axis = 1) #[batch, 4,256,256,3]
#Generate a distance to compute for the specular renderings (as position is important for this kind of renderings)
def tf_generate_distance(batchSize, nbRenderings):
gaussian = tf.random_normal([batchSize, nbRenderings, 1], 0.5, 0.75, dtype=tf.float32) # parameters chosen empirically to have a nice distance from a -1;1 surface.
return (tf.exp(gaussian))
#Normalize a tensor
def NormalizeIntensity(tensor):
maxValue = tf.reduce_max(tensor)
return tensor / maxValue
# Normalizes a tensor troughout the Channels dimension (BatchSize, Width, Height, Channels)
# Keeps 4th dimension to 1. Output will be (BatchSize, Width, Height, 1).
def tf_Normalize(tensor):
Length = tf.sqrt(tf.reduce_sum(tf.square(tensor), axis = -1, keep_dims=True))
return tf.div(tensor, Length)
# Computes the dot product between 2 tensors (BatchSize, Width, Height, Channels)
# Keeps 4th dimension to 1. Output will be (BatchSize, Width, Height, 1).
def tf_DotProduct(tensorA, tensorB):
return tf.reduce_sum(tf.multiply(tensorA, tensorB), axis = -1, keep_dims=True)
#Very small lamp attenuation
def tf_lampAttenuation(distance):
DISTANCE_ATTENUATION_MULT = 0.001
return 1.0 / (1.0 + DISTANCE_ATTENUATION_MULT*tf.square(distance))
#Physically based lamp attenuation
def tf_lampAttenuation_pbr(distance):
return 1.0 / tf.square(distance)
#Clip values between min an max
def squeezeValues(tensor, min, max):
return tf.clip_by_value(tensor, min, max)
#Make sure the roughness is between 0.1 and 1.0 to avoid having pure mirror (with nothing to reflect it will be black)
def adaptRougness(mixedMaterial):
#Material has shape [Batch, 4, 256,256,3]
multiplier = [1.0, 1.0, 0.9, 1.0]
addition = [0.0, 0.0, 0.1, 0.0]
multiplier = tf.reshape(multiplier, [1,4,1,1,1])
addition = tf.reshape(addition, [1,4,1,1,1])
return (mixedMaterial * multiplier) + addition
#Varies a bit the power of albedos to augment the variety
def adaptAlbedos(mixedMaterial, batchSize):
randomAlbedoMultipliers = tf.random_uniform([batchSize, 2], 0.7, 1.0)
multiplier = tf.concat([tf.ones([batchSize, 1]), tf.expand_dims(randomAlbedoMultipliers[:,0], axis=-1), tf.ones([batchSize, 1]), tf.expand_dims(randomAlbedoMultipliers[:,1], axis=-1)], axis = -1)
multiplier = tf.reshape(multiplier, [batchSize,4,1,1,1])
return (mixedMaterial * multiplier)
#Flatten normals in a target tensor to augment the variety
def adaptNormals(mixedMaterial, batchSize):
shouldRemoveNormal = tf.random_uniform([batchSize], 0.0, 5.0)
boolValue = tf.floor(tf.minimum(shouldRemoveNormal, 1.0)) #0 if shouldRemoveNormal>=0 && <= 1 ; 1 if > 1. So it has (100/5) % of chance to happen
boolValue = tf.reshape(boolValue, [batchSize, 1, 1, 1])
normals = preprocess(mixedMaterial[:,0]) #go to -1;1
normalsXY = normals[:,:,:,:-1] * boolValue #put to 0 the XY if needed
normals = tf.concat([normalsXY, tf.expand_dims(normals[:,:,:,-1], axis=-1)], axis = -1)
normals = tf_Normalize(normals) #renormalize, putting the Z to 1 if XY are 0
normals = deprocess(normals) #go back to 0;1
roughness = mixedMaterial[:,2]
InvertBoolValue = (boolValue - 1.0) * -1.0
additionRoughness = tf.tile(tf.clip_by_value(tf.random_normal([1], 0.65, 0.05), 0.0, 1.0), [3]) * InvertBoolValue
roughness = (roughness * boolValue) + additionRoughness
mixedMaterial = tf.concat([tf.expand_dims(normals, axis=1), tf.expand_dims(mixedMaterial[:,1], axis = 1), tf.expand_dims(roughness, axis = 1), tf.expand_dims(mixedMaterial[:,3], axis = 1)], axis=1)
print("adapting normal and roughness")
return mixedMaterial
#Crops an image using the given parameters. Used to crop the inputs if it was bigger than wanted.
def cropImage(params):
image = params[0] # shape [height, width, 3]
topLeftCorner = params[1] # shape [2]
cropSize = params[2] #shape [1]
return image[topLeftCorner[0]:topLeftCorner[0] + cropSize, topLeftCorner[1]:topLeftCorner[1] + cropSize, :]
#Crops the input picture to have a proper size input. Allows to have jittering images
def cutSidesOut(inputs, targetstoRender, topLeft, cropSize, firstAsGuide, averageCrop):
#Inputs have shape [BatchSize, nbRenderings, height, width, 3]
#Targets gave shape [batchsize, height, width, 3]
#topleft has shape [batchSize, nbRenderings, 2]
inputOriginalShape = tf.shape(inputs)
topLeftOriginalShape = tf.shape(topLeft)
inputs = tf.reshape(inputs, [-1, inputOriginalShape[2], inputOriginalShape[3], inputOriginalShape[4]])
topLeftInputs = tf.reshape(topLeft, [-1, topLeftOriginalShape[2]])
cropsizeTiled = tf.tile(tf.constant([cropSize]), [tf.shape(topLeftInputs)[0]])
croppedInputs = tf.map_fn(cropImage, (inputs, topLeftInputs, cropsizeTiled), dtype = tf.float32)
newInputShape = tf.shape(croppedInputs)
croppedInputs = tf.reshape(croppedInputs, [inputOriginalShape[0], inputOriginalShape[1], newInputShape[1], newInputShape[2], newInputShape[3]])
cropsizeTiled = tf.tile(tf.constant([cropSize]), [tf.shape(targetstoRender)[0]])
positionToCropTarget = topLeft[:,0,:]
if firstAsGuide:
positionToCropTarget = tf.zeros(tf.shape(positionToCropTarget), dtype=tf.int32) + averageCrop
croppedTargets = tf.map_fn(cropImage, [targetstoRender, positionToCropTarget, cropsizeTiled], dtype=tf.float32)
return croppedInputs, croppedTargets
#Materials have shape [batch, targetNb,256,256,3]
#Mix the materials, am particularly careful on the normals as the are vector fields and we don't want to break them.
def mixMaterials(material1, material2, alpha):
normal1Corrected = (material1[:, 0] - 0.5) * 2.0 #go between -1 and 1
normal2Corrected = (material2[:, 0] - 0.5) * 2.0
normal1Projected = normal1Corrected / tf.expand_dims(tf.maximum(0.01, normal1Corrected[:,:,:,2]), axis = -1) #Project the normals to use the X and Y derivative
normal2Projected = normal2Corrected / tf.expand_dims(tf.maximum(0.01, normal2Corrected[:,:,:,2]), axis = -1)
mixedNormals = alpha * normal1Projected + (1.0 - alpha) * normal2Projected
normalizedNormals = mixedNormals / tf.sqrt(tf.reduce_sum(tf.square(mixedNormals), axis=-1, keep_dims=True))
normals = (normalizedNormals * 0.5) + 0.5 # Back to 0;1
mixedRest = alpha * material1[:, 1:] + (1.0 - alpha) * material2[:, 1:]
final = tf.concat([tf.expand_dims(normals, axis = 1), mixedRest], axis = 1)
return final
# Generate an array grid between -1;1 to act as the "coordconv" input layer (see coordconv paper)
def generateCoords(inputShape):
crop_size = inputShape[-2]
firstDim = inputShape[0]
Xcoords= tf.expand_dims(tf.lin_space(-1.0, 1.0, crop_size), axis=0)
Xcoords = tf.tile(Xcoords,[crop_size, 1])
Ycoords = -1 * tf.transpose(Xcoords) #put -1 in the bottom of the table
Xcoords = tf.expand_dims(Xcoords, axis = -1)
Ycoords = tf.expand_dims(Ycoords, axis = -1)
coords = tf.concat([Xcoords, Ycoords], axis=-1)
coords = tf.expand_dims(coords, axis = 0)#Add dimension to support batch size and nbRenderings should now be [1, 256, 256, 2].
coords = tf.tile(coords, [firstDim, 1, 1, 1]) #Add the proper dimension here for concat
return coords
# Generate an array grid between -1;1 to act as each pixel position for the rendering.
def generateSurfaceArray(crop_size, pixelsToAdd = 0):
totalSize = crop_size + (pixelsToAdd * 2)
surfaceArray=[]
XsurfaceArray = tf.expand_dims(tf.lin_space(-1.0, 1.0, totalSize), axis=0)
XsurfaceArray = tf.tile(XsurfaceArray,[totalSize, 1])
YsurfaceArray = -1 * tf.transpose(XsurfaceArray) #put -1 in the bottom of the table
XsurfaceArray = tf.expand_dims(XsurfaceArray, axis = -1)
YsurfaceArray = tf.expand_dims(YsurfaceArray, axis = -1)
surfaceArray = tf.concat([XsurfaceArray, YsurfaceArray, tf.zeros([totalSize, totalSize,1], dtype=tf.float32)], axis=-1)
surfaceArray = tf.expand_dims(tf.expand_dims(surfaceArray, axis = 0), axis = 0)#Add dimension to support batch size and nbRenderings
return surfaceArray
#create small variation to be added to the positions of lights or camera.
def jitterPosAround(batchSize, nbRenderings, posTensor, mean = 0.0, stddev = 0.03):
randomPerturbation = tf.clip_by_value(tf.random_normal([batchSize, nbRenderings,1,1,1,3], mean, stddev, dtype=tf.float32), -0.24, 0.24) #Clip here how far it can go to 8 * stddev to avoid negative values on view or light ( Z minimum value is 0.3)
return posTensor + randomPerturbation
#Generate input renderings with a light and view setup depending on what was asked by the user. Edit this function and acquisitionScene.py to add more options for the input image rendering.
def generateInputRenderings(rendererInstance, material, batchSize, nbRenderings, surfaceArray, renderingScene, jitterLightPos, jitterViewPos, useAmbientLight, useAugmentationInRenderings = True):
currentLightPos, currentViewPos, currentConeTargetPos = None, None, None
if renderingScene == "staticViewPlaneLight":
currentLightPos, currentViewPos, currentConeTargetPos, surfaceArray, useAugmentation = acquisitionScene.defaultScene(surfaceArray, batchSize, nbRenderings)
elif renderingScene == "staticViewSpotLight":
currentLightPos, currentViewPos, currentConeTargetPos, surfaceArray, useAugmentation = acquisitionScene.defaultSceneSpotLight(surfaceArray, batchSize, nbRenderings)
elif renderingScene == "staticViewHemiSpotLight":
currentLightPos, currentViewPos, currentConeTargetPos, surfaceArray, useAugmentation = acquisitionScene.fixedViewHemisphereConeLight(surfaceArray, batchSize, nbRenderings)
elif renderingScene == "staticViewHemiSpotLightOneSurface":
currentLightPos, currentViewPos, currentConeTargetPos, surfaceArray, useAugmentation = acquisitionScene.fixedViewHemisphereConeLightOneOnPlane(surfaceArray, batchSize, nbRenderings)
elif renderingScene == "movingViewHemiSpotLightOneSurface":
currentLightPos, currentViewPos, currentConeTargetPos, surfaceArray, useAugmentation = acquisitionScene.movingViewHemisphereConeLightOneOnPlane(surfaceArray, batchSize, nbRenderings, useAugmentationInRenderings)
elif renderingScene == "fixedAngles":
currentLightPos, currentViewPos, currentConeTargetPos, surfaceArray, useAugmentation = acquisitionScene.fixedAngles(surfaceArray, batchSize, nbRenderings, useAugmentationInRenderings)
elif renderingScene == "globalTestScene":
print("BEWARE, USING TEST SCENE, NEED TO HAVE UNEVEN NBRENDERINGS AND NBRENDERINGS -1 /3 SHOULD BE INT")
currentLightPos, currentViewPos, currentConeTargetPos, surfaceArray, useAugmentation = acquisitionScene.globalTestScene(surfaceArray, batchSize, nbRenderings, useAugmentationInRenderings)
else:
raise ValueError("Rendering scene unknown")
if not useAugmentationInRenderings:
useAugmentation = False
print("use Augmentation ? : " + str(useAugmentation))
if jitterLightPos and not currentLightPos is None:
currentLightPos = jitterPosAround(batchSize, nbRenderings, currentLightPos, 0.0, 0.03)
if jitterViewPos and not currentViewPos is None:
currentViewPos = jitterPosAround(batchSize, nbRenderings, currentViewPos, 0.0, 0.03)
wo = currentViewPos - surfaceArray
if useAmbientLight:
ambientLightPos = acquisitionScene.generateAmbientLight(currentLightPos, batchSize)
wiAmbient = ambientLightPos - surfaceArray
renderingAmbient = rendererInstance.tf_Render(material, wiAmbient, wo, None, multiLight = True, currentLightPos = ambientLightPos, lossRendering = False, isAmbient = True, useAugmentation = useAugmentation)[0]
wi = currentLightPos - surfaceArray
#tf.summary.image("wi", convert(deprocess(wi[:, 0,0])), max_outputs=5)
renderings = rendererInstance.tf_Render(material,wi,wo, currentConeTargetPos, multiLight = True, currentLightPos = currentLightPos, lossRendering = False, isAmbient = False, useAugmentation = useAugmentation)[0] # was currentConeTargetPos not None
if useAmbientLight:
renderings = renderings + renderingAmbient #Add ambient if necessary
renderingAmbient = tf.clip_by_value(renderingAmbient, 0.0, 1.0)
renderingAmbient = tf.pow(renderingAmbient, 0.4545)
renderingAmbient = tf.image.convert_image_dtype(convert(renderingAmbient), dtype=tf.float32)
tf.summary.image("renderingAmbient", convert(renderingAmbient[0, :]), max_outputs=5)
if useAugmentation:
renderings = addNoise(renderings)
renderings = tf.clip_by_value(renderings, 0.0, 1.0) # Make sure noise doesn't put values below 0 and simulate over exposure
renderings = tf.pow(renderings, 0.4545) #gamma the results
#renderings = tf.clip_by_value(renderings, 0.0, 1.0) # to simulate over exposure
#renderings = tf.Print(renderings, [tf.reduce_mean(renderings)], message="mean of renderings: ", summarize=20)
#renderings = tf.Print(renderings, [tf.reduce_max(renderings)], message="max of renderings: ", summarize=20)
renderings = tf.image.convert_image_dtype(convert(renderings), dtype=tf.float32)
return renderings
#Adds a little bit of noise
def addNoise(renderings):
shape = tf.shape(renderings)
stddevNoise = tf.exp(tf.random_normal((), mean = np.log(0.005), stddev=0.3))
noise = tf.random_normal(shape, mean=0.0, stddev=stddevNoise)
return renderings + noise
#generate the diffuse rendering for the loss computation
def tf_generateDiffuseRendering(batchSize, nbRenderings, targets, outputs, renderer):
currentViewPos = tf_generate_normalized_random_direction(batchSize, nbRenderings, lowEps = 0.001, highEps = 0.1)
currentLightPos = tf_generate_normalized_random_direction(batchSize, nbRenderings, lowEps = 0.001, highEps = 0.1)
wi = currentLightPos
wi = tf.expand_dims(wi, axis=2)
wi = tf.expand_dims(wi, axis=2)
wo = currentViewPos
wo = tf.expand_dims(wo, axis=2)
wo = tf.expand_dims(wo, axis=2)
#Add a dimension to compensate for the nb of renderings
#targets = tf.expand_dims(targets, axis=-2)
#outputs = tf.expand_dims(outputs, axis=-2)
#Here we have wi and wo with shape [batchSize, height,width, nbRenderings, 3]
renderedDiffuse = renderer.tf_Render(targets,wi,wo, None, "diffuse", useAugmentation = False, lossRendering = True)[0]
renderedDiffuseOutputs = renderer.tf_Render(outputs,wi,wo, None, "", useAugmentation = False, lossRendering = True)[0]#tf_Render_Optis(outputs,wi,wo)
#renderedDiffuse = tf.Print(renderedDiffuse, [tf.shape(renderedDiffuse)], message="This is renderings targets Diffuse: ", summarize=20)
#renderedDiffuseOutputs = tf.Print(renderedDiffuseOutputs, [tf.shape(renderedDiffuseOutputs)], message="This is renderings outputs Diffuse: ", summarize=20)
return [renderedDiffuse, renderedDiffuseOutputs]
#generate the specular rendering for the loss computation
def tf_generateSpecularRendering(batchSize, nbRenderings, surfaceArray, targets, outputs, renderer):
currentViewDir = tf_generate_normalized_random_direction(batchSize, nbRenderings, lowEps = 0.001, highEps = 0.1)
currentLightDir = currentViewDir * tf.expand_dims([-1.0, -1.0, 1.0], axis = 0)
#Shift position to have highlight elsewhere than in the center.
currentShift = tf.concat([tf.random_uniform([batchSize, nbRenderings, 2], -1.0, 1.0), tf.zeros([batchSize, nbRenderings, 1], dtype=tf.float32) + 0.0001], axis=-1)
currentViewPos = tf.multiply(currentViewDir, tf_generate_distance(batchSize, nbRenderings)) + currentShift
currentLightPos = tf.multiply(currentLightDir, tf_generate_distance(batchSize, nbRenderings)) + currentShift
currentViewPos = tf.expand_dims(currentViewPos, axis=2)
currentViewPos = tf.expand_dims(currentViewPos, axis=2)
currentLightPos = tf.expand_dims(currentLightPos, axis=2)
currentLightPos = tf.expand_dims(currentLightPos, axis=2)
wo = currentViewPos - surfaceArray
wi = currentLightPos - surfaceArray
#targets = tf.expand_dims(targets, axis=-2)
#outputs = tf.expand_dims(outputs, axis=-2)
#targets = tf.Print(targets, [tf.shape(targets)], message="This is targets in specu renderings: ", summarize=20)
renderedSpecular = renderer.tf_Render(targets,wi,wo, None, "specu", useAugmentation = False, lossRendering = True)[0]
renderedSpecularOutputs = renderer.tf_Render(outputs,wi,wo, None, "", useAugmentation = False, lossRendering = True)[0]
#tf_Render_Optis(outputs,wi,wo, includeDiffuse = a.includeDiffuse)
#renderedSpecularOutputs = tf.Print(renderedSpecularOutputs, [tf.shape(renderedSpecularOutputs)], message="This is renderings outputs Specular: ", summarize=20)
return [renderedSpecular, renderedSpecularOutputs]
#Define a saver that could load only variable which are saved and ignore variables it doesn't have. /!\USE WITH CAUTION/!\ it wil not tell you if nothing was found or loaded.
def optimistic_saver(save_file):
reader = tf.train.NewCheckpointReader(save_file)
saved_shapes = reader.get_variable_to_shape_map()
var_names = sorted([(var.name, var.name.split(':')[0]) for var in tf.global_variables() if var.name.split(':')[0] in saved_shapes])
restore_vars = []
name2var = dict(zip(map(lambda x:x.name.split(':')[0], tf.global_variables()), tf.global_variables()))
with tf.variable_scope('', reuse=True):
for var_name, saved_var_name in var_names:
curr_var = name2var[saved_var_name]
var_shape = curr_var.get_shape().as_list()
if var_shape == saved_shapes[saved_var_name]:
restore_vars.append(curr_var)
return tf.train.Saver(restore_vars)
#Check if an event should happen depending of the step of training.
def should(freq, max_steps, step):
return freq > 0 and ((step + 1) % freq == 0 or step == max_steps - 1)
#Reshape the inputs to ba able to process them easily with multiple renderings. Put everything in the first dimension.
def input_reshape(inputs, NoMaxPooling, nbRenderings):
#take care of reshaping the inputs
batchSize = tf.shape(inputs)[0]
if NoMaxPooling:
renderings = tf.split(inputs, num_or_size_splits=nbRenderings, axis=1)
reshaped = tf.concat(renderings, axis = -1)
reshaped = tf.squeeze(reshaped, axis = 1) #this should remove the now useless dim
else:
nbInputs = tf.shape(inputs)[1]
reshaped = tf.reshape(inputs, [batchSize * nbInputs, int(inputs.get_shape()[2]), int(inputs.get_shape()[3]), int(inputs.get_shape()[4])]) #Should be [batchSize * nbInputs, 256,256,3]
return reshaped, batchSize
# def process_targets(targets):
# diffuse = targets[:,:,:,3:6]
# normals = targets[:,:,:,0:3]
# roughness = targets[:,:,:,6:9]
# specular = targets[:,:,:,9:12]
# return tf.concat([normals[:,:,:,0:2],diffuse, tf.expand_dims(roughness[:,:,:,0], axis=-1), specular], axis=-1)
#Put the normals and roughness back to 3 channel for easier processing.
def deprocess_outputs(outputs):
partialOutputedNormals = outputs[:,:,:,0:2] * 3.0 #The multiplication here gives space to generate direction with angle > pi/4
outputedDiffuse = outputs[:,:,:,2:5]
outputedRoughness = outputs[:,:,:,5]
outputedSpecular = outputs[:,:,:,6:9]
normalShape = tf.shape(partialOutputedNormals)
newShape = [normalShape[0], normalShape[1], normalShape[2], 1]
#normalShape[-1] = 1
tmpNormals = tf.ones(newShape, tf.float32)
normNormals = tf_Normalize(tf.concat([partialOutputedNormals, tmpNormals], axis = -1))
outputedRoughnessExpanded = tf.expand_dims(outputedRoughness, axis = -1)
return tf.concat([normNormals, outputedDiffuse, outputedRoughnessExpanded, outputedRoughnessExpanded, outputedRoughnessExpanded, outputedSpecular], axis=-1)
#Reshape tensor and add gamma for vizualisation purposes.
def reshape_tensor_display(tensor, splitAmount, logAlbedo = False, axisToSplit = 3):
tensors_list = tf.split(tensor, splitAmount, axis=axisToSplit)#4 * [batch, 256,256,3]
if tensors_list[0].get_shape()[1] == 1:
tensors_list = [tf.squeeze (tensor, axis = 1) for tensor in tensors_list]
if logAlbedo:
tensors_list[-1] = logTensor(tensors_list[-1])
tensors_list[1] = logTensor(tensors_list[1])
tensors = tf.stack(tensors_list, axis = 1) #[batch, 4,256,256,3]
shape = tf.shape(tensors)
newShape = tf.concat([[shape[0] * shape[1]], shape[2:]], axis=0)
tensors_reshaped = tf.reshape(tensors, newShape)
return tensors_reshaped
#Register renderings, inputs, targets, outputs and loss value to tensorboard
def registerTensorboard(paths, images, nbInputsMax, nbTargets, loss_value, batch_size, targetsRenderings, outputsRenderings):
inputs = images[0]
targets = images[1]
outputs = images[2]
targetsList = tf.split(targets, batch_size, axis = 0)
inputsList = tf.split(inputs, batch_size, axis = 0)
#print(targetsList[0])
#inputsList[0] = tf.Print(inputsList[0], [tf.reduce_mean(inputsList[0])], "mean of inputs 0")
tf.summary.image("targets", targetsList[0], max_outputs=nbTargets)
tf.summary.image("inputs", inputsList[0], max_outputs=nbInputsMax)
tf.summary.image("outputs", outputs, max_outputs=nbTargets)
tf.summary.scalar("loss", loss_value)
#targetsRenderings is [batchSize,nbRenderings, 256, 256, 3]
tf.summary.image("targets renderings", tf.unstack(tf.log(targetsRenderings[0] + 0.1), axis=0), max_outputs=9)
tf.summary.image("outputs renderings", tf.unstack(tf.log(outputsRenderings[0] + 0.1), axis=0), max_outputs=9)
#Deprocess an image to be visible our of tensorflow.
def deprocess_images(inputs, targets, outputs, gammaCorrectedInputs, nbTargets, logAlbedo):
inputs = deprocess(inputs)
targets = deprocess(targets)
outputs = deprocess(outputs)
#gammaCorrectedInputs = deprocess(gammaCorrectedInputs)
#inputs = logTensor(inputs)
with tf.name_scope("transform_images"):
targetShape = targets.get_shape()
targets_reshaped = reshape_tensor_display(targets, nbTargets, logAlbedo, axisToSplit = 1)#tf.reshape(targets, [-1, int(targetShape[2]), int(targetShape[3]), int(targetShape[4])])
outputs_reshaped = reshape_tensor_display(outputs, nbTargets, logAlbedo, axisToSplit = 3)
inputs_reshaped = tf.reshape(inputs, [-1,tf.shape(inputs)[2],tf.shape(inputs)[3],tf.shape(inputs)[4]])
gammaCorrectedInputs_reshaped = tf.reshape(gammaCorrectedInputs, [-1, tf.shape(gammaCorrectedInputs)[2], tf.shape(gammaCorrectedInputs)[3], tf.shape(gammaCorrectedInputs)[4]])
with tf.name_scope("convert_images"):
converted_inputs = convert(inputs_reshaped)
converted_targets = convert(targets_reshaped)
converted_outputs = convert(outputs_reshaped)
converted_gammaCorrectedInputs = convert(gammaCorrectedInputs_reshaped)
#converted_inputs = tf.Print(converted_inputs, [tf.shape(converted_inputs)], message="This is converted_inputs: ", summarize=20)
return converted_inputs, converted_targets, converted_outputs, converted_gammaCorrectedInputs
#Create the variables to be fetched from tensorflow
def display_images_fetches(paths, inputs, targets, gammaCorrectedInputs, outputs, nbTargets, logAlbedo):
converted_inputs, converted_targets, converted_outputs, converted_gammaCorrectedInputs = deprocess_images(inputs, targets, outputs, gammaCorrectedInputs, nbTargets, logAlbedo)
with tf.name_scope("encode_images"):
display_fetches = {
"paths": paths,
"inputs": tf.map_fn(tf.image.encode_png, converted_inputs, dtype=tf.string, name="input_pngs"),
"targets": tf.map_fn(tf.image.encode_png, converted_targets, dtype=tf.string, name="target_pngs"),
"outputs": tf.map_fn(tf.image.encode_png, converted_outputs, dtype=tf.string, name="output_pngs"),
"gammaCorrectedInputs": tf.map_fn(tf.image.encode_png, converted_gammaCorrectedInputs, dtype=tf.string, name="gammaInput_pngs"),
}
images = [converted_inputs, converted_targets, converted_outputs]
return display_fetches, images
#convert the images to uint8
def convert(image, squeeze=False):
if squeeze:
def tempLog(imageValue):
imageValue= tf.log(imageValue + 0.01)
imageValue = imageValue - tf.reduce_min(imageValue)
imageValue = imageValue / tf.reduce_max(imageValue)
return imageValue
image = [tempLog(imageVal) for imageVal in image]
return tf.image.convert_image_dtype(image, dtype=tf.uint8, saturate=True)
#Save the images to disk and add the path to a list to be used by the html generator
def save_images(fetches, output_dir, batch_size, nbTargets, step=None):
image_dir = os.path.join(output_dir, "images")
if not os.path.exists(image_dir):
os.makedirs(image_dir)
filesets = []
for i, in_path in enumerate(fetches["paths"]):
name, _ = os.path.splitext(os.path.basename(in_path.decode("utf8")))
fileset = {"name": name, "step": step}
#fetch inputs
nbCurrentInput = len(fetches["inputs"])//batch_size # This only works if the nb of rendering is constant in the batch.
for kind in ["inputs","gammaCorrectedInputs"]:
fileset[kind] = {}
for idImage in range(nbCurrentInput):
fileset[kind][idImage] = save_image(idImage, step, name, kind, image_dir, fetches, nbCurrentInput, i)
#fetch outputs and targets
for kind in ["outputs", "targets"]:
fileset[kind] = {}
for idImage in range(nbTargets):
fileset[kind][idImage] = save_image(idImage, step, name, kind, image_dir, fetches, nbTargets, i)
filesets.append(fileset)
return filesets
#Save an image to disk
def save_image(idImage, step, name, kind, image_dir, fetches, nbImagesToRead, materialID):
filename = name + "-" + kind + "-" + str(idImage) + "-.png"
if step is not None:
filename = "%08d-%s" % (step, filename)
out_path = os.path.join(image_dir, filename)
contents = fetches[kind][materialID * nbImagesToRead + idImage]
with open(out_path, "wb") as f:
f.write(contents)
return filename
#Create the html using the files previously saved on disk.
def append_index(filesets, output_dir, nbTargets, mode, step=False):
nbMaxInput = 5
index_path = os.path.join(output_dir, "index.html")
if os.path.exists(index_path):
index = open(index_path, "a")
else:
titles = []
for nbInput in range(nbMaxInput):
titles.append(str(nbInput + 1) + "input Outputs")
titles.append("Ground Truth")
index = open(index_path, "w")
index.write("<html><body><table><tr>")
if step:
index.write("<th>step</th>")
index.write("<th>Material Name</th>")
for title in titles:
index.write("<th>" + title + "</th>")
index.write("</tr>\n")
for fileset in filesets:
for kind in ["gammaCorrectedInputs", "inputs"]:
index.write("<tr>")
nbInput = len(fileset[kind])
if step:
index.write("<td>%d</td>" % fileset["step"])
index.write("<td>%s %s</td>" % (fileset["name"], kind))
for idImage in range(nbInput):
#filetsetKey = kind + str(idImage)
index.write("<td><img src='images/%s'></td>" % fileset[kind][idImage])
if nbInput < nbMaxInput:
for i in range(nbMaxInput - nbInput):
index.write("<td></td>")
index.write("</tr>")
maps = ["normal", "diffuse", "roughness", "specular"]
for idImage in range(nbTargets):
index.write("<tr>")
if step:
index.write("<td>%d</td>" % fileset["step"])
index.write("<td>%s</td>" % (maps[idImage]))
for nbSkip in range(nbInput - 1):
index.write("<td></td>")
index.write("<td><img src='images/%s'></td>" % fileset["outputs"][idImage])
if nbInput < nbMaxInput:
for i in range(nbMaxInput - nbInput):
index.write("<td></td>")
if mode != "eval":
index.write("<td><img src='images/%s'></td>" % fileset["targets"][idImage])
index.write("</tr>\n")
return index_path
#Create a HTML which compiles all the results of a full test (All results with from 1 to N input images)
def writeGlobalHTML(output_dir, filesets, nbTargets, mode, nbMaxInput):
index_path = os.path.join(output_dir, "GlobalIndex.html")
if os.path.exists(index_path):
index = open(index_path, "a")
else:
titles = []
for nbInput in range(nbMaxInput):
titles.append(str(nbInput + 1) + "input Outputs")
titles.append("Ground Truth")
index = open(index_path, "w")
index.write("<html><body><table><tr>")
index.write("<th>Material Name</th>")
for title in titles:
index.write("<th>" + title + "</th>")
index.write("</tr>\n")
for fileset in filesets:
for inputType in ["gammaCorrectedInputs", "inputs"]:
index.write("<tr>")
index.write("<td>%s %s %s</td>" % (fileset["name"], str(nbMaxInput), inputType))
for currentInputNb in range(nbMaxInput):
currentInputDefaultPath = "images/%s" % fileset[inputType][currentInputNb]
index.write("<td><img src='" + str(nbMaxInput - 1) + "/" + currentInputDefaultPath +"'></td>")
index.write("</tr>")
maps = ["normal", "diffuse", "roughness", "specular"]
for idImage in range(nbTargets):
index.write("<tr>")
index.write("<td>%s</td>" % (maps[idImage]))
currentOutputImage = "images/%s" % fileset["outputs"][idImage]
for nbInput in range(nbMaxInput):
index.write("<td><img src='%s/%s'></td>" % (str(nbInput), currentOutputImage))
if mode != "eval":
index.write("<td><img src='%s/images/%s'></td>" % (str(nbInput), fileset["targets"][idImage]))
index.write("</tr>\n")
#Print all trainable variables in the network.
def print_trainable():
for v in tf.trainable_variables():
print(str(v.name) + ": " + str(v.get_shape()))