-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathstudent_model.py
89 lines (83 loc) · 2.57 KB
/
student_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import torch.nn as nn
import torch.nn.functional as F
import torch
HIDDEN1_UNITS = 128
HIDDEN2_UNITS = 64
HIDDEN3_UNITS = 64
HIDDEN4_UNITS = 32
HIDDEN5_UNITS = 32
HIDDEN6_UNITS = 64
HIDDEN7_UNITS = 64
HIDDEN8_UNITS = 8
class SNet(nn.Module):
"""
def __init__(self, input_size, output_size):
super().__init__()
self.layers = nn.Sequential(
nn.Linear(input_size, HIDDEN1_UNITS),
#nn.LeakyReLU(0.2, True),
nn.PReLU(HIDDEN1_UNITS),
nn.Linear(HIDDEN1_UNITS, HIDDEN2_UNITS),
#nn.Tanh(),
nn.PReLU(HIDDEN2_UNITS),
nn.Linear(HIDDEN2_UNITS, HIDDEN3_UNITS),
nn.PReLU(HIDDEN3_UNITS),
nn.Linear(HIDDEN3_UNITS, HIDDEN4_UNITS),
nn.PReLU(HIDDEN4_UNITS),
nn.Linear(HIDDEN4_UNITS, HIDDEN5_UNITS),
nn.PReLU(HIDDEN5_UNITS),
nn.Linear(HIDDEN5_UNITS, output_size),
)
def forward(self, x):
return self.layers(x)
"""
def __init__(self, input_size, output_size):
super().__init__()
self.fc1 = nn.Linear(input_size, HIDDEN1_UNITS)
self.prelu= nn.PReLU()
self.fc2 = nn.Linear(HIDDEN1_UNITS, HIDDEN2_UNITS)
self.fc3 = nn.Linear(HIDDEN2_UNITS, HIDDEN3_UNITS)
self.fc4 = nn.Linear(HIDDEN3_UNITS, HIDDEN4_UNITS)
self.fc5 = nn.Linear(HIDDEN4_UNITS, HIDDEN5_UNITS)
self.fc6 = nn.Linear(HIDDEN5_UNITS, HIDDEN6_UNITS)
self.fc7 = nn.Linear(HIDDEN6_UNITS, HIDDEN7_UNITS)
self.fc8 = nn.Linear(HIDDEN7_UNITS, HIDDEN8_UNITS)
self.fc9 = nn.Linear(HIDDEN8_UNITS, output_size)
#self.tanh= nn.Tanh()
def forward(self, x):
x=self.fc1(x)
x1=F.relu(x)
x1 = self.fc2(x1)
x2=F.relu(x1)
x2 = self.fc3(x2)
x3=F.relu(x2)
x3=torch.add(x2, x3)
nn.Dropout(p=0.2)
x3 = self.fc4(x3)
x4=F.relu(x3)
x4 = self.fc5(x4)
x5=F.relu(x4)
x5 = self.fc6(x5)
x5=F.relu(x5)
nn.Dropout(p=0.2)
x5 = self.fc7(x5)
x5=F.relu(x5)
x5 = self.fc8(x5)
x5=F.relu(x5)
x5 = self.fc9(x5)
return x5
"""
def forward(self, x):
x=self.fc1(x)
x1=torch.cat((F.relu(x),self.prelu(x)),1)
x2 = self.fc2(x1)
x2=torch.cat((F.relu(x2),self.prelu(x2)),1)
x3 = self.fc3(x2)
x3=torch.cat((F.relu(x3),self.prelu(x3)),1)
x4 = self.fc4(x3)
x4=torch.cat((F.relu(x4),self.prelu(x4)),1)
x5 = self.fc5(x4)
x5=torch.cat((F.relu(x5),self.prelu(x5)),1)
x6 = self.fc6(x5)
return x6
"""