-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathlane_data_gen_tusimple.py
150 lines (116 loc) · 3.72 KB
/
lane_data_gen_tusimple.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
#
# Include Setting
#
import cv2
import pandas
import numpy as np
import glob
import os
import json
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import matplotlib.patches as mpatches
from matplotlib.path import Path
from skimage.draw import line, bezier_curve
from tqdm import tqdm
BASE_PATH = "D:/Datasets/TuSimple/"
LABEL_FILES = ["label_data_0601.json",
"label_data_0531.json", "label_data_0601.json"]
POINT_COUNT = 50
VAL_COUNT = 300
TRAIN_COUNT = 800
def load_label_file(path):
with open(path) as contents:
lines = contents.readlines()
lanes = []
for line in lines:
data = json.loads(line)
lanes.append(data)
return lanes
def split_labels(data, nTrain, nVal):
offset = 0
train = []
val = []
for i in tqdm(range(nTrain)):
train.append(data[i])
for i in tqdm(range(nVal)):
val.append(data[nTrain + i])
return (train, val)
DOWNSCALE = 4
def draw(image, points, color):
for i in range(len(points)- 1 ):
vert = points[i]
next_vert = points[i + 1];
if vert[0] < 1:
continue
if next_vert[0] < 1:
continue
y1 = int(vert[0] / DOWNSCALE)
x1 = int(vert[1] / DOWNSCALE)
y2 = int(next_vert[0] / DOWNSCALE)
x2 = int(next_vert[1] / DOWNSCALE)
rr, cc = line(x1,y1,x2,y2)
rr = np.clip(rr, 0, int(720 / DOWNSCALE) - 2)
cc = np.clip(cc, 0, int(1280 / DOWNSCALE) -2)
image[rr ,cc, :] = 1.0
image[rr ,cc - 1, :] = 1.0
image[rr ,cc + 1, :] = 1.0
image[rr - 1 ,cc , :] = 1.0
image[rr + 1 ,cc , :] = 1.0
image[rr - 1 ,cc - 1, :] = 1.0
image[rr + 1 ,cc + 1, :] = 1.0
return image
def parse_labels(data):
filename = BASE_PATH + data["raw_file"]
image = cv2.imread(filename)
#image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = cv2.resize(image, (254, 126))
image = cv2.normalize(image.astype('float'), None,
0.0, 1.0, cv2.NORM_MINMAX)
lanes = data["lanes"]
h_samples = data["h_samples"]
lane_1 = []
lane_2 = []
lane_3 = []
lane_4 = []
for i in range(POINT_COUNT):
x1 = lanes[0][i]
x2 = lanes[1][i]
try:
x3 = lanes[2][i]
except:
x3 = -2
try:
x4 = lanes[3][i]
except:
x4 = -2
y = h_samples[i]
lane_1.append((x1 , y ))
lane_2.append((x2, y))
lane_3.append((x3 , y))
lane_4.append((x4, y))
lane_img = np.zeros([int(720 / DOWNSCALE),int(1280 / DOWNSCALE),3])
lane_img = draw(lane_img,lane_1, (1.0,0,0))
lane_img = draw(lane_img,lane_2, (0,1.0,0))
lane_img = draw(lane_img,lane_3, (0,1.0,0))
lane_img = draw(lane_img,lane_4, (0,0,1.0))
lane_img = cv2.resize(lane_img, (254, 126))
return [image, lane_img]
print("--- LOADING LABELES --- ")
labels = []
for label_file in tqdm(LABEL_FILES):
labels = labels + load_label_file(BASE_PATH + label_file)
print("LABEL COUNT: " + str(len(labels)))
print("--- SPLITTING LABELES --- ")
(train_labels, val_labels) = split_labels(labels, TRAIN_COUNT, VAL_COUNT)
print("--- PARSING LABELES --- ")
index = 0
for label in tqdm(train_labels):
data = parse_labels(label)
np.save("data/lane/train/tusimplelane-"+str(index)+".npy", data)
index += 1
index = 0
for label in tqdm(val_labels):
data = parse_labels(label)
np.save("data/lane/val/tusimplelane-"+str(index)+".npy", data)
index += 1