-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_aggregation.py
134 lines (115 loc) · 6.68 KB
/
model_aggregation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import numpy as np
import pandas as pd
from nds import ndomsort
import pygmo as pg
import copy
from fair_models import SimpleVoting
import experiment_utils
def nds_moo(models_df, n_selected = 10, with_acc = False):
models_df['EO'] = -models_df['EO']
models_df['DP'] = -models_df['DP']
if 'Acc' in models_df.columns:
models_df['Acc'] = -models_df['Acc']
metrics = models_df.values.tolist()
fronts = ndomsort.non_domin_sort(metrics)
selected_indexes = []
for front in fronts:
hv = pg.hypervolume([list(s) for s in fronts[front]])
if len(selected_indexes)==n_selected:
break
if len(fronts[front])+len(selected_indexes)<n_selected:
selected_indexes+=[metrics.index(seq) for seq in fronts[front]]
else:
last_front = list(copy.copy(fronts[front]))
nadir = np.max(metrics,axis=0)
while len(last_front)>n_selected-len(selected_indexes):
hv = pg.hypervolume([list(s) for s in last_front])
try:
idx_excl = hv.least_contributor(nadir)
del last_front[idx_excl]
except:
break
selected_indexes += [metrics.index(seq) for seq in last_front]
index_list = [models_df.index.tolist()[i] for i in selected_indexes]
return index_list
def ensemble_from_filtered_models(filtered_models, fair_feature, X_test, y_test):
# Generate ensemble
ensemble_model = SimpleVoting(estimators=filtered_models, voting='soft')
# Evaluate
metrics = experiment_utils.evaluate_model_test(ensemble_model, fair_feature, X_test, y_test)
return metrics
def simple_filter(models_df, n_acc, fair_metric, fair_filter, n_fair):
if fair_filter:
if fair_metric == 'CV':
index_list = list(models_df.nlargest(n_acc,'Acc').nsmallest(n_fair,fair_metric).index)
else:
index_list = list(models_df.nlargest(n_acc,'Acc').nlargest(n_fair,fair_metric).index)
else:
index_list = list(models_df.nlargest(n_acc,'Acc').index)
return index_list
def nds_filter(models_df, n_acc, with_acc, n_selected):
models_acc = models_df.nlargest(n_acc,'Acc')
if not with_acc:
models_acc = models_acc.drop(['Acc'], axis=1)
index_list = nds_moo(models_acc, n_selected = n_selected, with_acc = with_acc)
return index_list
def ensemble_filter(models_df, models_sols, fair_feature, X_test, y_test, n_acc, fair_metric = 'DP', fair_filter = True,
nds = False, with_acc = True, n_selected=10, n_fair=10):
if nds:
index_list = nds_filter(models_df, n_acc, with_acc, n_selected)
else:
index_list = simple_filter(models_df, n_acc, fair_metric, fair_filter, n_fair)
filtered_models = [("Model "+str(i), models_sols[i]) for i in index_list]
metrics = ensemble_from_filtered_models(filtered_models, fair_feature, X_test, y_test)
if nds:
if n_acc==150:
metrics['Filter'] = 'NDS(wAcc)' if with_acc else 'NDS'
else:
metrics['Filter'] = str(n_acc)+'Acc+NDS(wAcc)' if with_acc else str(n_acc)+'Acc+NDS'
else:
if n_acc==1:
metrics['Filter'] = 'BestAcc'
elif fair_filter:
metrics['Filter'] = str(n_acc)+'Acc+'+fair_metric
else:
metrics['Filter'] = 'All models' if n_acc==150 else str(n_acc)+'Acc'
return metrics
def compare_ensembles_fair_metrics(models_df, models_sols, fair_feature, X_test, y_test):
ensembles_metrics = [
ensemble_filter(models_df, models_sols, fair_feature, X_test, y_test, n_acc = 150, fair_filter = False),
ensemble_filter(models_df, models_sols, fair_feature, X_test, y_test, n_acc = 50, fair_filter = True, fair_metric='DP'),
ensemble_filter(models_df, models_sols, fair_feature, X_test, y_test, n_acc = 20, fair_filter = True, fair_metric='DP'),
ensemble_filter(models_df, models_sols, fair_feature, X_test, y_test, n_acc = 50, fair_filter = True, fair_metric='EO'),
ensemble_filter(models_df, models_sols, fair_feature, X_test, y_test, n_acc = 20, fair_filter = True, fair_metric='EO'),
ensemble_filter(models_df, models_sols, fair_feature, X_test, y_test, n_acc = 50, fair_filter = True, fair_metric='CV'),
ensemble_filter(models_df, models_sols, fair_feature, X_test, y_test, n_acc = 20, fair_filter = True, fair_metric='CV')
]
results_test = pd.DataFrame(ensembles_metrics)
results_test = results_test.set_index('Filter')
return results_test.copy()
def compare_ensembles_nds(models_df, models_sols, fair_feature, X_test, y_test):
ensembles_metrics = [
ensemble_filter(models_df, models_sols, fair_feature, X_test, y_test, n_acc = 1),
ensemble_filter(models_df, models_sols, fair_feature, X_test, y_test, n_acc = 150, fair_filter = False),
ensemble_filter(models_df, models_sols, fair_feature, X_test, y_test, n_acc = 150, nds = True, with_acc=True),
ensemble_filter(models_df, models_sols, fair_feature, X_test, y_test, n_acc = 50, nds = True, with_acc=True),
ensemble_filter(models_df, models_sols, fair_feature, X_test, y_test, n_acc = 20, nds = True, with_acc=True),
ensemble_filter(models_df, models_sols, fair_feature, X_test, y_test, n_acc = 150, nds = True, with_acc=False),
ensemble_filter(models_df, models_sols, fair_feature, X_test, y_test, n_acc = 50, nds = True, with_acc=False),
ensemble_filter(models_df, models_sols, fair_feature, X_test, y_test, n_acc = 20, nds = True, with_acc=False)
]
results_test = pd.DataFrame(ensembles_metrics)
results_test = results_test.set_index('Filter')
return results_test.copy()
def compare_single_models(models_df, models_sols, fair_feature, X_test, y_test):
ensembles_metrics = [
ensemble_filter(models_df, models_sols, fair_feature, X_test, y_test, n_acc = 1),
ensemble_filter(models_df, models_sols, fair_feature, X_test, y_test, n_acc = 150, fair_filter = True, fair_metric='DP',n_fair=1),
ensemble_filter(models_df, models_sols, fair_feature, X_test, y_test, n_acc = 150, fair_filter = True, fair_metric='EO',n_fair=1),
ensemble_filter(models_df, models_sols, fair_feature, X_test, y_test, n_acc = 150, fair_filter = True, fair_metric='CV',n_fair=1),
ensemble_filter(models_df, models_sols, fair_feature, X_test, y_test, n_acc = 150, nds = True, with_acc=False, n_selected=1),
ensemble_filter(models_df, models_sols, fair_feature, X_test, y_test, n_acc = 150, nds = True, with_acc=True, n_selected=1),
]
results_test = pd.DataFrame(ensembles_metrics)
results_test = results_test.set_index('Filter')
return results_test.copy()