-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain3.py
837 lines (674 loc) · 34.7 KB
/
train3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
"""
train2.py
Vikram Narayan
Uses a flat HMM to train a hierarchical HMM.
"""
# system imports
import pdb
import random
import numpy
import numpy.random
import argparse
from collections import defaultdict
import music21
import copy
import math
# local import
import hhmm
def initialize_emission_probs(note, prob_of_note):
"""given note, initialize an emission probability dictionary
so that the given note occurs with likelihood prob_of_note, and
the remaining (1-prob_of_note) is divided among remaining notes.
Assumes that prob_of_note is between 0 and 1 non-inclusive.
Assumes note is specified in a way analogous with hhmm.notes"""
emission_probs={}
emission_probs[note]=prob_of_note
remainder=1-prob_of_note
other_notes_probs = remainder/(len(hhmm.notes)-1)
for n in ['0','1','2','3']:
if n==note:
continue
emission_probs[n]=other_notes_probs
return emission_probs
def read_corpus(filename):
"""reads corpus file"""
observations=[]
f=open(filename, 'r')
for line in f:
observations.append(line[:len(line)-1])
f.close()
return observations
class HMM_node:
def __init__(self, note):
self.note=note
class HMM:
def __init__(self, hierarchicalHMM, filename):
"""converts a minimally self referential hierarchical HMM to a flat HMM"""
self.hierarchicalHMM=hierarchicalHMM
self.transitions={}
self.emissions={}
self.states={}
self.start=HMM_node(None)
self.states[self.start]=1
self.corresponding_flat_node={}
self.corresponding_hierarchical_node={}
# form dictionaries to create lookup dicts for flat and hierarchical production states
production_states=hierarchicalHMM.get_pstates(hierarchicalHMM.root)
for i in production_states:
hmm_node=HMM_node(i.note)
self.corresponding_flat_node[i]=hmm_node
self.corresponding_hierarchical_node[hmm_node]=i
self.states[hmm_node]=1
# add a state to the flat HMM corresponding to the 2nd level's eof state
# (necessary for the flattened probabilities to equal 1)
# for i in production_states:
# if i.depth==2:
# eof_node=hierarchicalHMM.get_eof_state(i)
# hmm_node=HMM_node('end_state')
# self.corresponding_flat_node[eof_node]=hmm_node
# self.corresponding_hierarchical_node[hmm_node]=eof_node
# self.states[hmm_node]=0
# break
# copy values from i.horizontal_transitions
for i in production_states:
i_flat = self.corresponding_flat_node[i]
self.transitions[i_flat]={}
for k in i.horizontal_transitions:
if k.type==hhmm.EOF_STATE:
continue
self.transitions[i_flat][self.corresponding_flat_node[k]]=i.horizontal_transitions[k]
"""=================================== OK UP TO HERE ==================================="""
for i in self.states:
if i==self.start or self.states[i]==0:
continue
else:
for j in self.states:
if j==self.start:
continue
if self.corresponding_hierarchical_node[i].parent==self.corresponding_hierarchical_node[j].parent:
continue
i_to_end = self.corresponding_hierarchical_node[i].horizontal_transitions[self.hierarchicalHMM.get_eof_state(self.corresponding_hierarchical_node[i])]
iparent_to_jparent = self.corresponding_hierarchical_node[i].parent.horizontal_transitions[self.corresponding_hierarchical_node[j].parent]
jparent_to_j = self.corresponding_hierarchical_node[j].parent.vertical_transitions[self.corresponding_hierarchical_node[j]]
self.transitions[i][j] = i_to_end * iparent_to_jparent * jparent_to_j
# vertical transition probabilities transformed into initial activation probabilities
# by computing the product of vertical probs from root state to production state
self.transitions[self.start]={}
self.transitions[self.start][self.start]=0
for i in production_states:
i_flat = self.corresponding_flat_node[i]
self.transitions[self.start][i_flat]=hierarchicalHMM.ps_to_root(i,1)
self.transitions[i_flat][self.start]=0
# self.root.vertical_transitions[i] = self.ps_to_root(i,1)
# prevent key error problems with the start state
self.emissions[self.start]={}
for note in ['0','1','2','3']:
self.emissions[self.start][note]=0
# each production state emits its assigned note with probability 1
for state in production_states:
# self.transitions[state]=copy.copy(state.horizontal_transitions)
self.emissions[self.corresponding_flat_node[state]]=initialize_emission_probs(state.note, 1)
# self.states = hierarchicalHMM.root.vertical_transitions.keys()
# probabilities transitioning from root state
# self.transitions[hierarchicalHMM.root]= copy.copy(hierarchicalHMM.root.vertical_transitions)
# self.start = (hierarchicalHMM.root)
for t in self.transitions:
hhmm.normalize(self.transitions[t])
# get corpus from file
self.observations = read_corpus(filename)
def best_state_sequence(self, observation):
"""given an observation as a list of symbols,
find the most likely state sequence that generated it."""
observation=observation.split()
viterbi_path = []
for i in range(len(observation)):
viterbi_path.append('')
# initialize table for viterbi algorithm
viterbi_table={}
back_pointers={}
for state in self.states:
viterbi_table[state]=[]
back_pointers[state]=[]
for i in range(len(observation)):
viterbi_table[state].append(0)
back_pointers[state].append('')
# initialize first column of viterbi table
actual_max=-float('inf')
for state in self.states:
viterbi_table[state][0] = numpy.log10(self.transitions[self.start][state] * self.emissions[state][observation[0]] )
back_pointers[state][0]=self.start
if viterbi_table[state][0] > actual_max:
actual_max = viterbi_table[state][0]
viterbi_path[0] = state
# fill in rest of viterbi table and the viterbi path
for output in range(1,len(observation)):
for state in self.states:
possible_max={}
for prev_state in self.states:
possible_max[prev_state] = (viterbi_table[prev_state][output-1] + numpy.log10(self.transitions[prev_state][state]*self.emissions[state][observation[output]]))
actual_max=-float('inf')
actual_prevstate=''
for value in possible_max:
if possible_max[value] > actual_max:
actual_max = possible_max[value]
actual_prevstate=value
viterbi_table[state][output] = actual_max
back_pointers[state][output] = actual_prevstate
viterbi_path[output-1] = actual_prevstate
# get the final state in the viterbi path
actual_max=-float('inf')
actual_prevstate=''
backtrace_starter=''
for state in self.states:
if viterbi_table[state][len(observation)-1] > actual_max:
actual_max = viterbi_table[state][len(observation)-1]
backtrace_starter=state
viterbi_path[len(observation)-1] = state
# follow the backtrace to get the viterbi path
stack=[backtrace_starter]
iterator=backtrace_starter
for i in range(len(observation)-1,0,-1):
stack.append(back_pointers[iterator][i])
iterator=back_pointers[iterator][i]
back_pointers
viterbi_path2=[]
while len(stack)>0:
viterbi_path2.append(stack.pop())
return (viterbi_path,viterbi_path2)
def forward_algorithm(self, observation):
"""given an observation as a list of symbols,
run the forward algorithm"""
# initialize forward algorithm table
fwd_table={}
fwd_table['scaling factor']=[]
for i in range(len(observation)):
fwd_table['scaling factor'].append(0)
for state in self.states:
fwd_table[state]=[]
for i in range(len(observation)):
fwd_table[state].append(0)
# initialize first col of fwd algorithm table
for state in self.states:
# logs will be taken at the end
try:
fwd_table[state][0] = (self.transitions[self.start][state] * self.emissions[state][observation[0]] )
except (KeyError, IndexError) as ke:
pdb.set_trace()
# fill in the rest of the forward table
for output in range(1,len(observation)):
for state in self.states:
fwd=0
for prev_state in self.states:
# print "state in fwd_table",state in fwd_table
# print "prev_state in self.transitions",prev_state in self.transitions
# print "state in self.transitions[prev_state]",state in self.transitions[prev_state]
if (state not in self.transitions[prev_state]):
pdb.set_trace()
# print "state in self.emissions",state in self.emissions
# print "state==prev_state",state==prev_state
# print "\n\n"
try:
fwd+=fwd_table[prev_state][output-1] * self.transitions[prev_state][state] * self.emissions[state][observation[output]]
except KeyError as ke:
pdb.set_trace()
fwd_table[state][output] = fwd
return fwd_table
def total_probability(self, observation):
"""compute the probability of the observation under the model"""
observation=observation.split()
fwd_table = self.forward_algorithm(observation)
# forward_prob = numpy.log10(numpy.prod(fwd_table['scaling factor']))
forward_prob=0
for state in self.states:
forward_prob+=fwd_table[state][len(observation)-1]
return numpy.log10(forward_prob)
def backward_algorithm(self, observation):
"""given an observation as a list of symbols,
find the probability of the observation under this HMM,
using the backward algorithm"""
# initialize backward algorithm table
bk_table={}
bk_table['scaling factor']=[]
observation2 = [self.start]+observation
for i in range(len(observation2)):
bk_table['scaling factor'].append(0)
for state in self.states:
bk_table[state]=[]
for i in range(len(observation2)):
bk_table[state].append(0)
# initialize and scale last column
for state in self.states:
bk_table[state][len(observation2)-1]=1.0
output=len(observation2)-2
while output>=1:
for state in self.states:
back=0
for after_state in self.states:
back+=self.transitions[state][after_state] * self.emissions[after_state][observation2[output+1]] * bk_table[after_state][output+1]
bk_table[state][output] = back
output=output-1
back=0
for state in self.states:
back+= self.transitions[self.start][state] * self.emissions[state][observation2[1]] * bk_table[state][1]
for state in self.states:
bk_table[state][0]=back
return bk_table
def total_probability_bk(self, observation):
"""compute the probability of the observation under the model"""
observation=observation.split()
bk_table = self.backward_algorithm(observation)
for state in self.states:
bk_prob = bk_table[state][0]
return numpy.log10(bk_prob)
def sigma(self, hierarchical_node):
"""returns the set of production states that are descendants of hierarchical_node.
returns hierarchical_node if it is a production state"""
q=[]
ps=[]
q.append(hierarchical_node)
if hierarchical_node.type==hhmm.INTERNAL_STATE:
while len(q)>0:
n=q.pop()
for child in n.vertical_transitions:
if child.type==hhmm.PRODUCTION_STATE:
ps.append(child)
elif child.type==hhmm.INTERNAL_STATE:
q.append(child)
return ps
elif hierarchical_node.type==hhmm.PRODUCTION_STATE:
return [hierarchical_node]
def all_nodes_from_hhmm(self):
""" retrieves all non-eof nodes from the hhmm. """
allnodes=[]
allnodes.append(self.hierarchicalHMM.root)
q=[]
q.append(self.hierarchicalHMM.root)
while len(q)>0:
n=q.pop()
for child in n.vertical_transitions:
if child.type==hhmm.PRODUCTION_STATE:
allnodes.append(child)
elif child.type==hhmm.INTERNAL_STATE:
allnodes.append(child)
q.append(child)
return allnodes
def reflatten(self):
# make sure self.hierarchicalHMM is minimally self referential
for internal_node in self.hierarchicalHMM.root.vertical_transitions:
if internal_node.type==hhmm.INTERNAL_STATE:
sr=self.hierarchicalHMM.is_SR(internal_node)
if sr:
# print internal_node.horizontal_transitions, "\n\n"
self.hierarchicalHMM.convert_to_minSR(internal_node)
# reflatten the hierarchical HMM
for i in self.states:
if i==self.start or self.states[i]==0:
continue
else:
for j in self.states:
if j==self.start:
continue
if self.corresponding_hierarchical_node[i].parent==self.corresponding_hierarchical_node[j].parent:
continue
i_to_end = self.corresponding_hierarchical_node[i].horizontal_transitions[self.hierarchicalHMM.get_eof_state(self.corresponding_hierarchical_node[i])]
iparent_to_jparent = self.corresponding_hierarchical_node[i].parent.horizontal_transitions[self.corresponding_hierarchical_node[j].parent]
jparent_to_j = self.corresponding_hierarchical_node[j].parent.vertical_transitions[self.corresponding_hierarchical_node[j]]
self.transitions[i][j] = i_to_end * iparent_to_jparent * jparent_to_j
# vertical transition probabilities transformed into initial activation probabilities
# by computing the product of vertical probs from root state to production state
production_states=self.hierarchicalHMM.get_pstates(self.hierarchicalHMM.root)
self.transitions[self.start]={}
self.transitions[self.start][self.start]=0
for i in production_states:
i_flat = self.corresponding_flat_node[i]
self.transitions[self.start][i_flat]=hierarchicalHMM.ps_to_root(i,1)
self.transitions[i_flat][self.start]=0
# self.root.vertical_transitions[i] = self.ps_to_root(i,1)
for t in self.transitions:
hhmm.normalize(self.transitions[t])
# pdb.set_trace()
def expectation_maximization(self, corpus, convergence, iterations):
"""given a corpus, which is a list of observations, and
- apply EM to learn the HMM parameters that maximize the corpus likelihood.
- stop when log likelihood changes less than the convergence threhshold, or the algorithm has completed the specified number of iterations.
- update self.transitions and self.emissions, and return the log likelihood
of the corpus under the final updated parameters."""
prev_log_likelihood=-float('inf')
epochs=0
allnodes=self.all_nodes_from_hhmm()
print "EM: starting expectation maximization..."
while (True):
log_likelihood=0
print "EM: epoch:",epochs
trans_counts={}
pi={}
end_trans={}
for i in allnodes:
trans_counts[i]={}
end_trans[i]=0
for j in i.horizontal_transitions:
# if j.type==hhmm.EOF_STATE:
# continue
trans_counts[i][j]=0
for i in allnodes:
if i.type!=hhmm.INTERNAL_STATE:
continue
pi[i]={}
for j in i.vertical_transitions:
if j.type==hhmm.EOF_STATE:
continue
pi[i][j]=0
for observation in corpus:
# print "EM: observation:",observation
alpha = self.forward_algorithm(observation.split())
beta = self.backward_algorithm(observation.split())
prob_of_obs = self.total_probability(observation)
log_likelihood+=prob_of_obs
if math.isnan(log_likelihood):
pdb.set_trace()
# print "EM: sanity check that alpha==beta:",prob_of_obs==self.total_probability_bk(observation)
# gamma[t][i]: prob that node i was active at time t
gamma={}
# compute gamma for production states in the hierarchical HMM by using
# corresponding alpha and beta values in the flat HMM
for t in range(len(observation.split())):
gamma[t]={}
for i in self.states:
# the start state of the flat HMM has no hierarchical analogue, so skip it
if i==self.start:
continue
# beta[i] is indexed at time t+1 because the table is 1 longer than the alpha table
# print "alpha[i].has_key(t)",alpha[i].has_key(t), 'beta[i].has_key(t+1)',beta[i].has_key(t+1)
try:
gamma[t][self.corresponding_hierarchical_node[i]] = (alpha[i][t] * beta[i][t+1])/(10**prob_of_obs)
except KeyError as ke:
pdb.set_trace()
# normalize gamma values
for t in range(len(observation.split())):
hhmm.normalize(gamma[t])
# xi[t][i][j]: prob that at time t there was a transition from state i to state j
xi={}
# compute xi
for t in range(len(observation.split())-1):
xi[t]={}
for i in self.states:
if i==self.start:
continue
xi[t][self.corresponding_hierarchical_node[i]]={}
for j in self.states:
if j==self.start:
continue
try:
# print "alpha[i][t]", alpha[i][t]
# print "beta[i][t+2]",beta[i][t+2]
# print "self.emissions[i][j]",sum(self.emissions[i].values())
# print "self.emissions[j][observation.split()[t+1]]",self.emissions[j][observation.split()[t+1]]
xi[t][self.corresponding_hierarchical_node[i]][self.corresponding_hierarchical_node[j]] = (alpha[i][t] * self.transitions[i][j] * self.emissions[j][observation.split()[t+1]] * beta[i][t+2])/(10**prob_of_obs)
if self.corresponding_hierarchical_node[i].parent!=self.corresponding_hierarchical_node[j].parent:
trans_counts[self.corresponding_hierarchical_node[i]][self.hierarchicalHMM.get_eof_state(self.corresponding_hierarchical_node[i])] += (alpha[i][t] * self.transitions[i][j] * self.emissions[j][observation.split()[t+1]] * beta[i][t+2])/(10**prob_of_obs)
else:
trans_counts[self.corresponding_hierarchical_node[i]][self.corresponding_hierarchical_node[j]] += (alpha[i][t] * self.transitions[i][j] * self.emissions[j][observation.split()[t+1]] * beta[i][t+2])/(10**prob_of_obs)
except (KeyError,IndexError) as ke:
pdb.set_trace()
# normalize xi values
# for t in range(len(observation.split())-1):
# for i in xi[t]:
# hhmm.normalize(xi[t][i])
# gamma for internal states
for t in range(len(observation.split())):
for i in allnodes:
# skip production states and eof states
if i.type!=hhmm.INTERNAL_STATE:
continue
gamma[t][i] = 0
set_of_i=set(self.sigma(i))
for l in set_of_i:
gamma[t][i] += gamma[t][l]
# xi for internal states
for t in range(len(observation.split())-1):
for i in allnodes:
# skip production states and eof states
if i.type!=hhmm.INTERNAL_STATE:
continue
xi[t][i]={}
for j in i.horizontal_transitions:
xi[t][i][j]=0
if i==j or j.type==hhmm.EOF_STATE:
continue
# if j.type==hhmm.EOF_STATE:
# set_of_i=set(self.sigma(i))
# xi[t][i][j] += gamma[t][i] * i.horizontal_transitions[j]
# trans_counts[i][j] += gamma[t][i] * i.horizontal_transitions[j]
# # for k in set_of_i:
# # # probability of "emitting" an eof symbol is 1, so don't need to multply that
# # xi[t][i][j]+=gamma[t][k]*k.horizontal_transitions[self.hierarchicalHMM.get_eof_state(k)]
# # trans_counts[i][j]+=gamma[t][k]*k.horizontal_transitions[self.hierarchicalHMM.get_eof_state(k)]
# continue
set_of_i=set(self.sigma(i))
set_of_j=set(self.sigma(j))
for k in set_of_i:
for l in set_of_j:
xi[t][i][j]+=xi[t][k][l]
trans_counts[i][j] +=xi[t][k][l]
pi[l.parent][l] += xi[t][k][l]
for i in allnodes:
if i.type==hhmm.INTERNAL_STATE and i!=self.hierarchicalHMM.root:
try:
# xi[len(observation.split())-1][i][self.hierarchicalHMM.get_eof_state(i)]=gamma[len(observation.split())-1][i] * i.horizontal_transitions[self.hierarchicalHMM.get_eof_state(i)]
trans_counts[i][self.hierarchicalHMM.get_eof_state(i)]=gamma[len(observation.split())-1][i] * i.horizontal_transitions[self.hierarchicalHMM.get_eof_state(i)]
except KeyError as e:
pdb.set_trace()
# now re-estimate Tij between all nodes i and j that are not end states
# for i in allnodes:
# xi_sum_at_each_t=0
# gamma_sum_at_each_t=0
# for t in range(len(observation.split())-2):
# gamma_sum_at_each_t+=gamma[t][i]
# for j in i.horizontal_transitions:
# if j.type==hhmm.EOF_STATE:
# continue
# for t in range(len(observation.split())-2):
# try:
# sigma_i=set(self.sigma(i))
# sigma_j=set(self.sigma(j))
# except TypeError as te:
# pdb.set_trace()
# for k in sigma_i:
# for l in sigma_j:
# xi_sum_at_each_t+=xi[t][k][l]
# # RuntimeWarning: invalid value encountered in double_scalars
# if gamma_sum_at_each_t > numpy.finfo(float).eps:
# try:
# trans_counts[i][j]+=xi_sum_at_each_t/gamma_sum_at_each_t
# except KeyError as ke:
# pdb.set_trace()
# # fill pi[i][j] to estimate hierarchical transitions
# for i in allnodes:
# if i.type!=hhmm.INTERNAL_STATE:
# continue
# for j in i.vertical_transitions:
# if j.type==hhmm.EOF_STATE:
# continue
# sigma_j = set(self.sigma(j))
# sigma_i=set(self.sigma(i))
# not_sigma_i=set(self.sigma(self.hierarchicalHMM.root)) - set_of_i
# gamma_sum_pi_numerator=0
# for k in sigma_j:
# gamma_sum_pi_numerator+=gamma[0][k]
# xi_numerator=0
# for t in range(len(observation.split())-2):
# for k in not_sigma_i:
# for l in sigma_j:
# xi_numerator+=xi[t][k][l]
# gamma_denominator=0
# for k in sigma_i:
# gamma_denominator+=gamma[0][k]
# xi_denominator=0
# for t in range(len(observation.split())-2):
# for k in not_sigma_i:
# for l in sigma_i:
# xi_denominator+=xi[t][k][l]
# if (gamma_denominator + xi_denominator) > numpy.finfo(float).eps:
# pi[i][j]+=(gamma_sum_pi_numerator + xi_numerator)/(gamma_denominator + xi_denominator)
# # re-estimate transitions from state i to i's eof state
# for i in allnodes:
# # skip root because root is the 1 internal state that doesn't have an eof state
# if i==self.hierarchicalHMM.root:
# continue
# i_eof = self.hierarchicalHMM.get_eof_state(i)
# if i_eof not in trans_counts[i]:
# trans_counts[i][i_eof]=0
# sigma_i=set(self.sigma(i))
# # all production states descended from i's parent
# sigma_pi = set(self.sigma(i.parent))
# xi_numerator=0
# gamma_denominator=0
# for t in range(len(observation.split())-2):
# for k in sigma_i:
# for l in sigma_pi:
# xi_numerator+=xi[t][k][l]
# gamma_denominator+=gamma[t][i]
# if gamma_denominator > numpy.finfo(float).eps:
# end_trans[i]+=xi_numerator/gamma_denominator
# trans_counts[i][i_eof]+=xi_numerator/gamma_denominator
# pdb.set_trace()
# normalize trans_counts, pi, and end_trans
for i in trans_counts:
if i==self.hierarchicalHMM.root:
continue
try:
hhmm.normalize(trans_counts[i])
except ZeroDivisionError as e:
pdb.set_trace()
for i in pi:
try:
hhmm.normalize(pi[i])
except ZeroDivisionError as e:
pdb.set_trace()
# transfer values from trans_counts and pi to the hhmm
# for i in allnodes:
# if i.type!=hhmm.INTERNAL_STATE:
# continue
# if sum(pi[i].values())==0:
# continue
# for j in i.vertical_transitions:
# if j.type==hhmm.EOF_STATE:
# continue
# i.vertical_transitions[j] = pi[i][j]
for i in allnodes:
if i==self.hierarchicalHMM.root:
continue
if sum(trans_counts[i].values())==0:
# print "zero sum we hv a problem"
# pdb.set_trace()
continue
for j in i.horizontal_transitions:
# if j.type==hhmm.EOF_STATE:
# continue
i.horizontal_transitions[j] = trans_counts[i][j]
# for i in allnodes:
# if i.type==hhmm.INTERNAL_STATE:
# if sum(pi[i].values())==0:
# continue
# for j in i.vertical_transitions:
# if j.type==hhmm.EOF_STATE:
# continue
# i.vertical_transitions[j] = pi[i][j]
# try:
# for j in pi[i]:
# i.vertical_transitions[j] = pi[i][j]
# except KeyError as e:
# pdb.set_trace()
# # if i==root, only copy the new vertical transitions
# # if i==self.hierarchicalHMM.root:
# # continue
# for j in trans_counts[i]:
# i.horizontal_transitions[j] = trans_counts[i][j]
print "EM: prev_log_likelihood-log_likelihood:", prev_log_likelihood-log_likelihood
epochs+=1
if (epochs>iterations) or (abs(prev_log_likelihood-log_likelihood) < convergence):
break
prev_log_likelihood=log_likelihood
# print "EM: log_likelihood", log_likelihood
self.reflatten()
# pdb.set_trace()
return log_likelihood
def generate(self):
"""after an hmm has been trained, use it to generate songs
REWRITE THIS"""
current=self.start
emission_notes=[]
current = hhmm.probabilistic_choice(self.transitions[current])
emission_notes.append(hhmm.probabilistic_choice(self.emissions[current]))
while True:
current = hhmm.probabilistic_choice(self.transitions[current])
if current.type==hhmm.EOF_STATE or current==self.start:
break
emission_notes.append(hhmm.probabilistic_choice(self.emissions[current]))
print emission_notes
# hhmm.write_midi(emission_notes)
if __name__=='__main__':
print "making hierarchicalHMM..."
hierarchicalHMM = hhmm.HHMM()
parent = hierarchicalHMM.root
# create sub-states for red & blue
for i in ['red', 'blue']:
new_child = hierarchicalHMM.create_child(parent, name=i)
hierarchicalHMM.initialize_horizontal_probs(new_child)
hhmm.normalize(new_child.vertical_transitions)
hierarchicalHMM.initialize_horizontal_probs(parent)
hhmm.normalize(parent.vertical_transitions)
# create production states
blue_node=hierarchicalHMM.node_dict['blue']
red_node=hierarchicalHMM.node_dict['red']
hierarchicalHMM.create_child(blue_node, internal=False, note='2',name='navy_blue',)
hierarchicalHMM.create_child(blue_node, internal=False, note='3',name='sky_blue',)
hierarchicalHMM.create_child(red_node, internal=False, note='0',name='bright_red',)
hierarchicalHMM.create_child(red_node, internal=False, note='1',name='maroon',)
br_node = hierarchicalHMM.node_dict['bright_red']
maroon_node = hierarchicalHMM.node_dict['maroon']
nb_node = hierarchicalHMM.node_dict['navy_blue']
sb_node = hierarchicalHMM.node_dict['sky_blue']
# initialize probabilities of root
parent.vertical_transitions[red_node]=0.8
parent.vertical_transitions[blue_node]=0.2
# initialize probabilities of blue_node
blue_node.horizontal_transitions[red_node]=0.4
blue_node.horizontal_transitions[hierarchicalHMM.get_eof_state(blue_node)]=0.5
blue_node.horizontal_transitions[blue_node]=0.1
blue_node.vertical_transitions[nb_node]=0.7
blue_node.vertical_transitions[sb_node]=0.3
# initialize probabilities of red_node
red_node.horizontal_transitions[blue_node]=0.8
red_node.horizontal_transitions[hierarchicalHMM.get_eof_state(red_node)]=0.1
red_node.horizontal_transitions[red_node]=0.1
red_node.vertical_transitions[br_node]=0.5
red_node.vertical_transitions[maroon_node]=0.5
# initialize probabilities of production states
br_node.horizontal_transitions[maroon_node]=0.5
br_node.horizontal_transitions[hierarchicalHMM.get_eof_state(br_node)]=0.5
br_node.horizontal_transitions[br_node]=0.0
maroon_node.horizontal_transitions[br_node]=0.5
maroon_node.horizontal_transitions[hierarchicalHMM.get_eof_state(maroon_node)]=0.5
maroon_node.horizontal_transitions[maroon_node]=0.0
nb_node.horizontal_transitions[sb_node]=0.3
nb_node.horizontal_transitions[hierarchicalHMM.get_eof_state(nb_node)]=0.4
nb_node.horizontal_transitions[nb_node]=0.3
sb_node.horizontal_transitions[nb_node]=0.9
sb_node.horizontal_transitions[hierarchicalHMM.get_eof_state(sb_node)]=0.1
sb_node.horizontal_transitions[sb_node]=0.0
# testing self referential loop stuff
print "making hierarchicalHMM minimaly self referential..."
for internal_node in parent.vertical_transitions:
if internal_node.type==hhmm.INTERNAL_STATE:
sr=hierarchicalHMM.is_SR(internal_node)
if sr:
# print internal_node.horizontal_transitions, "\n\n"
hierarchicalHMM.convert_to_minSR(internal_node)
# OK UP TO HERE
print "converting flattened hierarchicalHMM to normal hmm..."
hmm = HMM(hierarchicalHMM, 'toy2.data')
print "beginning expectation maximization..."
alpha=hmm.expectation_maximization(hmm.observations,convergence=0.001, iterations=200)
for i in xrange(10):
hmm.hierarchicalHMM.traverse(hmm.hierarchicalHMM.root,20)