-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathq2_3.py
189 lines (148 loc) · 5.27 KB
/
q2_3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
'''
Question 2.3 Skeleton Code
Here you should implement and evaluate the Naive Bayes classifier.
'''
import data
import numpy as np
# Import pyplot - plt.imshow is useful!
import matplotlib.pyplot as plt
import q2_2 as help
import scipy as sp
from scipy import misc
def binarize_data(pixel_values):
'''
Binarize the data by thresholding around 0.5
'''
return np.where(pixel_values > 0.5, 1.0, 0.0)
def compute_parameters(train_data, train_labels):
'''
Compute the eta MAP estimate/MLE with augmented data
You should return a numpy array of shape (10, 64)
where the ith row corresponds to the ith digit class.
'''
eta = np.zeros((10, 64))
eta_matrix = []
for key in range(10):
vector_class = data.get_digits_by_label(train_data, train_labels, key)
nums_1 = np.count_nonzero(vector_class, axis=0)
eta = (nums_1 + 2 - 1)/(vector_class.shape[0] + 2 + 2 - 2)
eta_matrix.append(eta)
return np.array(eta_matrix)
def plot_images(class_images):
'''
Plot each of the images corresponding to each class side by side in grayscale
'''
image = []
for i in range(10):
img_i = class_images[i]
image.append(img_i.reshape(8, 8))
# Plot all means on same axis
all_concat = np.concatenate(image, 1)
plt.imshow(all_concat, cmap='gray')
plt.show()
def generate_new_data(eta):
'''
Sample a new data point from your generative distribution p(x|y,theta) for
each value of y in the range 0...10
Plot these values
'''
r = np.random.rand(10, 64)
for i in range(len(r)):
for j in range(len(r[i])):
if r[i][j] >= eta[i][j]:
r[i][j] = 0
else:
r[i][j] = 1
plot_images(r)
def generative_likelihood(bin_digits, etas):
'''
Compute the generative log-likelihood:
log p(x|y, eta)
Should return an n x 10 numpy array
'''
matrix = []
for datum in bin_digits: # 1 -> 64
vector_1x10 = []
for i in range(len(etas)): # 1 -> 10
success = datum * np.log(etas[i])
failure = (1 - datum) * np.log(1 - etas[i])
binomial_1 = success + failure
sum_binomial_1 = np.sum(binomial_1) # sum of log = log(product). scalar?
vector_1x10.append(sum_binomial_1)
matrix.append(vector_1x10)
matrix = np.array(matrix)
return matrix
def conditional_likelihood(bin_digits, etas):
'''
Compute the conditional likelihood:
log p(y|x, eta)
This should be a numpy array of shape (n, 10)
Where n is the number of datapoints and 10 corresponds to each digit class
'''
cond_l = np.zeros((len(bin_digits), 10))
num = generative_likelihood(bin_digits, etas)
for i in range(len(cond_l)):
for j in range(len(cond_l[0])):
cond_l[i][j] = num[i][j] - sp.misc.logsumexp(num[i])
return cond_l
def avg_conditional_likelihood(bin_digits, labels, etas):
'''
Compute the average conditional likelihood over the true class labels
AVG( log p(y_i|x_i, eta) )
i.e. the average log likelihood that the model assigns to the correct class label
'''
conditionals = []
cond_likelihood = conditional_likelihood(bin_digits, etas)
for i in range(len(cond_likelihood)):
trueClass_cond = cond_likelihood[i][int(labels[i])]
conditionals.append(trueClass_cond)
mean = np.mean(conditionals)
return mean
def classify_data(bin_digits, etas):
'''
Classify new points by taking the most likely posterior class
'''
# Compute and return the most likely class
cond_likelihood = conditional_likelihood(bin_digits, etas)
return np.argmax(cond_likelihood, axis=1)
def main():
train_data, train_labels, test_data, test_labels = data.load_all_data('data')
train_data, test_data = binarize_data(train_data), binarize_data(test_data)
# Fit the model
eta = compute_parameters(train_data, train_labels)
# print(len(eta))
# gl = generative_likelihood(train_data, eta)
# print('generative_likelihood:')
# print(gl)
# print(gl.shape)
# cl = conditional_likelihood(train_data, eta)
# print('cond_likelihood:')
# print(cl)
# print(cl.shape)
## 2.3.5
avg_c = avg_conditional_likelihood(train_data, train_labels, eta)
print('avg cond likelihood train:')
print(avg_c)
# # average conditional train; likelihood: -0.9437538618
avg_c_test = avg_conditional_likelihood(test_data, test_labels, eta)
print('avg cond likelihood test:')
print(avg_c_test)
# # avg cond likelihood test: -0.987270433725
## 2.3.6
cd_train = classify_data(train_data, eta)
ac_train = help.accuracy_score(train_labels, cd_train)
print('train accuracy:')
print(ac_train)
# # train accuracy 0.774142857143
cd_test = classify_data(test_data, eta)
ac_test = help.accuracy_score(test_labels, cd_test)
print('test accuracy:')
print(ac_test)
# # test accuracy: 0.76425
# Evaluation
## 2.3.3
plot_images(eta)
## 2.3.4
generate_new_data(eta)
if __name__ == '__main__':
main()