-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
executable file
·456 lines (398 loc) · 21.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
import sys
sys.path.append("/nfs/home/vfernandez/models/brainSPADE_fi/brainSPADE_f")
'''
Trainer of a multi-sequence SPADE network with NMI Loss to ensure cross-sequence coherence
Author: Virginia Fernandez
'''
import os
import moreutils as uvir
from options.train_options import TrainOptions
import data
from utils.iter_counter import IterationCounter
from utils.visualizer import Visualizer
from data.dataset_utils import clear_data
import numpy as np
import torch
from trainers.pix2pix_trainer import Pix2PixTrainer
from copy import deepcopy
import gc
from data.spadenai_v2 import SpadeNai
from data.spadenai_v2_sliced import SpadeNaiSlice
import shutil
from monai.data.dataloader import DataLoader
from utils.tensorboard_writer import BrainspadeBoard
plot_errors = False
# Parse options
opt = TrainOptions().parse()
# # Save images for discriminator training
# folder_save = "/home/vf19/Documents/brainSPADE_2D/DATA/DISCRIMINATOR_ONLY_TRAINING_VAL"
# if not os.path.isdir(folder_save):
# os.makedirs(folder_save)
# Remove triplet
os.chdir('..') # Change directory to the previous one
# Dataset
if opt.dataset_type == 'sliced':
dataset_container = SpadeNaiSlice(opt, mode = 'train')
dataset_val_container = SpadeNaiSlice(opt, mode='validation')
else:
dataset_container = SpadeNai(opt, mode = 'train')
dataset_val_container = SpadeNai(opt, mode = 'validation', store_and_use_slices=True)
dataloader = DataLoader(dataset_container.sliceDataset,
batch_size=opt.batchSize, shuffle=False,
num_workers=1, drop_last=opt.isTrain)
dataloader_val = DataLoader(dataset_val_container.sliceDataset,
batch_size=opt.batchSize, shuffle=False,
num_workers=1, drop_last=False)
# Initialisation network
trainer = Pix2PixTrainer(opt)
# Iterations counter
iter_counter = IterationCounter(opt, len(dataset_container))
# Visualization tool
visualizer = Visualizer(opt)
visualizer.initialize_Validation(opt.continue_train)
if visualizer.back_up_validation_slices() and opt.dataset_type == 'volume':
dataset_val_container.read_stored_slices(store=os.path.join(visualizer.val_dir))
# Tensorboard
if opt.use_tboard:
tboard = BrainspadeBoard(opt)
# Validation save ID
save_im_id = None
# Gradients saved
gradients = {}
activations = {}
# Debug dataloader ***
# for epoch in range(100):
# print("Epoch %d/100" %(epoch))
# try:
# for dind, data_i in enumerate(dataloader):
# pass
# except Exception as e:
# print("Exception %d: %s" %(dind, str(e)))
# Training Loop
for epoch in iter_counter.training_epochs():
iter_counter.record_epoch_start(epoch)
train_gen_count = 0
train_dis_count = 0
train_total = 0
for dind, data_i in enumerate(dataloader):
train_total += 1
# Phase 1 Generator training.
# If accuracy is none, we train.
# If accuracy is < 65%, we train discriminator only.
# If accuracy is > 85%, we train generator only.
# If accuracy is between both, we train both.
# Ammend dataset container to register stored slices
if dataset_container.diff_style_volume and dataset_container.store_slices:
dataset_container.compute_slices(data_i['label_path'], data_i['slice_no'],
data_i['style_label_file'], data_i['slice_style_no'])
elif dataset_container.store_slices:
dataset_container.compute_slices(data_i['label_path'], data_i['slice_no'],
data_i['label_path'], data_i['slice_style_no'])
if dataset_container.intensify_lesions['flag'] and opt.dataset_type == 'volume':
dataset_container.compute_lesions()
d_acc = trainer.get_disc_accuracy()
if d_acc is None:
d_acc = iter_counter.add_assess_accuracy(None)
else:
d_acc = iter_counter.add_assess_accuracy(d_acc['D_acc_total'])
if d_acc is None:
train_disc = True
train_gen = True
elif trainer.disc_threshold['low'] <= d_acc <= trainer.disc_threshold['up']:
train_disc = True
train_gen = True
elif d_acc < trainer.disc_threshold['low']:
train_disc = True
train_gen = False
elif d_acc > trainer.disc_threshold['up']:
train_disc = False
train_gen = True
else:
Warning("Non numeric accuracy.")
iter_counter.record_one_iteration()
# Phase 1 Generator training.
if train_gen:
# If train_enc_only < epochs it means that from this epoch onward we only
# train the encoder. Otherwise, both.
iter_counter.record_one_gradient_iteration_gen()
if opt.train_enc_only is not None:
if epoch >= opt.train_enc_only:
trainer.run_encoder_one_step(data_i)
else:
if iter_counter.needs_gradient_calc(for_disc=False) and opt.tboard_gradients:
if opt.topK_discrim:
gradients_ = trainer.run_generator_one_step(data_i, with_gradients=True, epoch = epoch)
else:
gradients_ = trainer.run_generator_one_step(data_i, with_gradients=True)
gradients.update(gradients_)
else:
if opt.topK_discrim:
trainer.run_generator_one_step(data_i, epoch = epoch)
else:
trainer.run_generator_one_step(data_i)
else:
if iter_counter.needs_gradient_calc(for_disc=False) and opt.tboard_gradients:
if opt.topK_discrim:
gradients_ = trainer.run_generator_one_step(data_i, with_gradients=True, epoch = epoch)
else:
gradients_ = trainer.run_generator_one_step(data_i, with_gradients=True)
gradients.update(gradients_)
else:
if opt.topK_discrim:
trainer.run_generator_one_step(data_i, epoch=epoch)
else:
trainer.run_generator_one_step(data_i)
if iter_counter.needs_activations(for_disc=False) and opt.tboard_activations:
activations.update({'enc_mu': trainer.last_hooks['enc_mu'],
'enc_sigma': trainer.last_hooks['enc_sigma'],
'deocder': trainer.last_hooks['decoder']})
generated = trainer.get_latest_generated()
#uvir.saveBatchImages(data_i, generated, folder_save)
# If display is needed, we save the relevant data.
data_copy = deepcopy(data_i)
# Store generator losses
iter_counter.store_losses(trainer.g_losses, None)
# Part 1-D. If modality discriminator is active, save the images with highest errors.
if plot_errors:
if trainer.checkDiscriminatorLosses():
loss_modisc = trainer.g_losses['mod_disc'].item()
loss_modisc = np.round(loss_modisc, 5)
# Obtain latest generated images
generated = trainer.get_latest_generated()
img_dir = visualizer.check_errors_dir
fig_name = os.path.join(img_dir,
"epoch_%s_iter_%s.png" % (epoch, iter_counter.total_steps_so_far))
all_to_save = []
all_to_save.append(data_i['label']) # B x C
all_to_save.append(data_i['style_image'])
all_to_save.append(generated)
titles = ["Input Label", "Input Style", "Generated (error)"]
b_acc = {'sequence': data_copy['this_seq'],
'error': [str(loss_modisc)]*len(data_copy['this_seq'])}
uvir.saveFigs(all_to_save, fig_name, create_dir= True, nlabels= opt.label_nc,
same_scale = True, titles = titles, batch_accollades = b_acc,
index_label = 0, bound_normalization=opt.bound_normalization)
train_gen_count += 1
# Part 2. Train the discriminator.
if train_disc:
iter_counter.record_one_gradient_iteration_dis()
if iter_counter.needs_gradient_calc(for_disc=True) and opt.tboard_gradients:
if opt.topK_discrim:
if iter_counter.needs_D_display():
gradients_, outputs_D = trainer.run_discriminator_one_step(data_i,
with_gradients=True, epoch = epoch,
return_predictions=True)
else:
gradients_ = trainer.run_discriminator_one_step(data_i, with_gradients=True, epoch = epoch)
else:
if iter_counter.needs_D_display():
gradients_, outputs_D = trainer.run_discriminator_one_step(data_i, with_gradients=True,
return_predictions=True)
else:
gradients_ = trainer.run_discriminator_one_step(data_i, with_gradients=True)
gradients.update(gradients_)
else:
if opt.topK_discrim:
if iter_counter.needs_D_display():
outputs_D = trainer.run_discriminator_one_step(data_i, epoch = epoch, return_predictions=True)
else:
trainer.run_discriminator_one_step(data_i, epoch = epoch)
else:
if iter_counter.needs_D_display():
outputs_D = trainer.run_discriminator_one_step(data_i, epoch = epoch, return_predictions=True)
else:
trainer.run_discriminator_one_step(data_i)
iter_counter.store_losses(None, trainer.d_losses, trainer.d_accuracy)
train_dis_count += 1
if iter_counter.needs_activations(for_disc=True) and opt.tboard_activations:
for key_hook, val_hook in trainer.last_hooks.items():
if 'disc' in key_hook:
activations.update({key_hook:val_hook})
# Part 3. Tests and display
# Part 3-1. Code distribution boxplots are saved in web/code_plots
if iter_counter.needs_enc_display():
if opt.type_prior == 'N':
gen_z, gen_mu, gen_logvar, gen_noise = trainer.run_encoder_tester(data_i)
visualizer.save_codes(gen_z, gen_mu, gen_logvar, data_i['this_seq'], gen_noise, iter_counter.current_epoch,
iter_counter.epoch_iter)
elif opt.type_prior == 'S':
gen_z, gen_mu, gen_logvar = trainer.run_encoder_tester(data_i)
visualizer.save_codes(gen_z, gen_mu, gen_logvar, sequence = data_i['this_seq'],
epoch = iter_counter.current_epoch,
iter = iter_counter.epoch_iter)
if iter_counter.needs_D_display():
visualizer.plot_D_results(outputs_D, epoch, iter_counter.epoch_iter)
# Clear.
clear_data(trainer, data_i)
# Part 3-2. Printing of losses IF:
# We are every N_print iterations
# We have latest losses.
if iter_counter.needs_printing() and iter_counter.epoch_iter>1:
if trainer.g_losses is not None:
losses = trainer.get_latest_losses_nw()
accuracies = trainer.get_disc_accuracy()
losses.update(accuracies)
visualizer.print_current_errors(epoch, iter_counter.epoch_iter,
losses, iter_counter.time_per_iter)
else:
print("No losses available at printing time for epoch %d and iteration %d" %(epoch,
iter_counter.epoch_iter))
# Part 3-3. We save the last generated set of mages in web/images
if iter_counter.needs_displaying() and iter_counter.epoch_iter>1:
if trainer.get_latest_generated() is not None:
generated = trainer.get_latest_generated()
img_dir = visualizer.img_dir
fig_name = os.path.join(img_dir,
"epoch_%s_iter_%s.png" % (epoch, iter_counter.total_steps_so_far))
# We append all we want to save in a list
all_to_save = []
b_ind = np.random.randint(0, len(data_copy['this_seq'])) # We select one of the batch items
all_to_save.append(data_copy['label'])
all_to_save.append(torch.cat([data_copy['style_image'][:, 0, :, :].unsqueeze(1)] * 3, dim=1))
all_to_save.append(torch.cat([data_copy['image'][:, 0, :, :].unsqueeze(1)]*3, dim = 1))
all_to_save.append(generated)
titles = ["Input Label", "Input style", "Ground truth", "Generated (sequence)"]
b_acc = {'sequence': data_copy['this_seq'][b_ind]}
uvir.saveFigs(all_to_save, fig_name, create_dir=True, nlabels = opt.label_nc, index=b_ind,
same_scale= True, titles = titles, batch_accollades = b_acc, index_label = 0,
bound_normalization=opt.bound_normalization)
# Part 3-4. We save the iteration stage of the network.
if iter_counter.needs_saving():
# Save data
print('Saving the latest model (epoch %d, total steps %d)' % (epoch, iter_counter.total_steps_so_far))
trainer.save('latest')
iter_counter.record_current_iter()
# Part 3-5. If gradients, then plot summary them
if len(gradients) != 0:
try:
if opt.use_tboard and opt.tboard_gradients:
tboard.log_grad_histograms(gradients, epoch, iter_counter.epoch_iter,
len(dataset_container)*1)
except:
gradients = {}
# Part 3.6. If activations, then plot summary them
if len(activations) != 0:
if opt.use_tboard and opt.tboard_activations:
tboard.log_act_histograms(activations, epoch, iter_counter.epoch_iter,
len(dataset_container)*1)
activations = {}
torch.cuda.empty_cache() # Epoch end. Empty cache
# Part 4. Validation.
if iter_counter.needs_testing():
print("Validation results:\n")
if opt.z_dim in [2,3]:
do_code = True # Plot codes of each validation image in 2D or 3D plot.
else:
do_code = False # If the latent dimension is > 3, we don't plot (dimensionality reduction would be required)
with torch.no_grad():
# We select only one image from the validation set
if dataset_val_container.__len__() > 1:
if save_im_id == None:
save_im_id = np.random.randint(0, dataset_val_container.__len__() - 1)
else:
save_im_id = 0
# Epoch-wise metrics to-validation
results_values = [] # Values for the test
accuracy_mod = []
accuracy_dat = []
losses_nw = {}
losses = {}
if do_code:
codes = {}
for t, data_t in enumerate(dataloader_val):
if opt.dataset_type =='volume':
dataset_val_container.compute_slices(data_t['label_path'], data_t['slice_no'],
data_t['style_label_path'], data_t['slice_style_no'])
if do_code:
gen_val, g_losses, g_losses_nw, code_val = trainer.run_tester_one_step(data_t, get_code=True)
# Store codes
for b in range(code_val.shape[0]):
if data_t['this_seq'][b]+"-"+data_t['st_dataset'][b] in codes.keys():
codes[data_t['this_seq'][b]+"-"+data_t['st_dataset'][b]].append(code_val[b,...].detach().cpu())
else:
codes[data_t['this_seq'][b]+"-"+data_t['st_dataset'][b]] = [code_val[b,...].detach().cpu()]
# Store accuracies
if 'acc_mod' in g_losses_nw.keys() and 'acc_dat' in g_losses_nw.keys():
accuracy_mod.append(g_losses_nw['acc_mod'])
accuracy_dat.append(g_losses_nw['acc_dat'])
else:
gen_val, g_losses, g_losses_nw = trainer.run_tester_one_step(data_t, epoch=epoch)
# Store accuracies
if 'acc_mod' in g_losses_nw.keys() and 'acc_dat' in g_losses_nw.keys():
accuracy_mod.append(g_losses_nw['acc_mod'])
accuracy_dat.append(g_losses_nw['acc_dat'])
clear_data(None, data_t)
# Part 4-1 Save images in web/validation
if t == save_im_id: # We only save one of the instances per epoch
fig_name = os.path.join(visualizer.val_dir,
"validation_epoch_%s_%s.png" % ('inference', epoch))
val_imgs = [data_t['label'], data_t['style_image'], data_t['image'], gen_val]
titles = ["Input Label", "Input style", "GT", "Synth. (sequence)"]
b_acc = {'sequence':data_t['this_seq']}
uvir.saveFigs(val_imgs, fig_name, create_dir=True, nlabels = opt.label_nc,
same_scale= True, titles = titles, batch_accollades= b_acc,
index_label= 0, bound_normalization=opt.bound_normalization)
# Image quality metric
ssim_item = 0
ssim_item += uvir.structural_Similarity(data_t['image'], gen_val, mean=True)
results_values.append(ssim_item)
# Average losses
for loss_item, loss_value in g_losses_nw.items():
if 'acc_mod' in loss_item or 'acc_dat' in loss_item:
# These are treated separately!
continue
# Unweighted losses
if loss_item not in losses_nw.keys():
losses_nw[loss_item] = [loss_value]
else:
losses_nw[loss_item].append(loss_value)
# Weighted loss
if loss_item not in losses.keys():
losses[loss_item] = [g_losses[loss_item]]
else:
losses[loss_item].append(g_losses_nw[loss_item])
# Plot codes if requested
if do_code:
uvir.plotCodes(codes, opt.sequences, opt.datasets, opt.z_dim,
os.path.join(visualizer.val_dir, 'code_plots_%d.png' %epoch),
epoch)
# Process losses and register them
final_losses = {}
final_losses_nw = {}
for loss_item, loss_value_list in losses.items():
final_losses[loss_item] = np.mean(loss_value_list)
final_losses_nw[loss_item] = np.mean(losses_nw[loss_item])
if opt.dataset_type == 'volume':
if not visualizer.back_up_validation_slices():
dataset_val_container.back_up_stored_slices(store = os.path.join(visualizer.val_dir))
visualizer.register_Val_Losses(epoch, errors_nw=final_losses_nw, errors_w=final_losses, print_it=True)
# Part 4-2 Save structural similarity txt in web/validation
if len(accuracy_mod) == 0:
accuracy_mod = [-1]
if len(accuracy_dat) == 0:
accuracy_dat = [-1]
visualizer.register_Test_Results(epoch, {'SSIM': np.mean(results_values), 'Modality-Disc': np.mean(accuracy_mod),
'Dataset-Disc': np.mean(accuracy_dat)})
print("SSIM %.3f\tAcc_mod %.3f\tAcc_data %.3f\n" %(100*np.mean(results_values),
np.mean(accuracy_mod),
np.mean(accuracy_dat)))
# Part 5. We update LR
trainer.update_learning_rate(epoch)
iter_counter.record_epoch_end()
# Part 6. We save the network.
if epoch % opt.save_epoch_freq == 0 or epoch == iter_counter.total_epochs:
print('saving the model at the end of epoch %d, iters %d' % (epoch, iter_counter.total_steps_so_far))
trainer.save('latest')
if epoch % opt.save_epoch_copy == 0:
trainer.save(epoch)
print("Trained generator %d/%d" %(train_gen_count, train_total))
print("Trained discriminator %d/%d" %(train_dis_count, train_total))
# Part 7. Summary writer
if opt.use_tboard:
tboard.log_results(iter_counter.getStoredLosses(), epoch, is_val=False)
tboard.log_results(final_losses_nw, epoch, is_val=True)
# Part 8. Cleaning.
gc.collect()
torch.cuda.empty_cache()
print("Removing cache directory...")
shutil.rmtree(dataset_container.cache_dir)