Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

INFO:tensorflow:Error reported to Coordinator: <class 'tensorflow.python.framework.errors_impl.InvalidArgumentError'>, assertion failed: [Unable to decode bytes as JPEG, PNG, GIF, or BMP] #1

Open
ghost opened this issue Oct 11, 2017 · 0 comments

Comments

@ghost
Copy link

ghost commented Oct 11, 2017

Hi all,
I use Python 2.7.13 and Tensorflow 1.3.0 on CPU.

I want to use DensNet( https://github.com/pudae/tensorflow-densenet ) for regression problem. My data contains 60000 jpeg images with 37 float labels for each image.
I saved my data into tfrecords files by:

`
def Read_Labels(label_path):
labels_csv = pd.read_csv(label_path)
labels = np.array(labels_csv)
return labels[:,1:]

def load_image(addr):
# read an image and resize to (224, 224)
img = cv2.imread(addr)
img = cv2.resize(img, (224, 224), interpolation=cv2.INTER_CUBIC)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = img.astype(np.float32)
return img

def Shuffle_images_with_labels(shuffle_data, photo_filenames, labels):
if shuffle_data:
c = list(zip(photo_filenames, labels))
shuffle(c)
addrs, labels = zip(*c)
return addrs, labels

def image_to_tfexample_mine(image_data, image_format, height, width, label):
return tf.train.Example(features=tf.train.Features(feature={
'image/encoded': bytes_feature(image_data),
'image/format': bytes_feature(image_format),
'image/class/label': _float_feature(label),
'image/height': int64_feature(height),
'image/width': int64_feature(width),
}))

def _convert_dataset(split_name, filenames, labels, dataset_dir):
assert split_name in ['train', 'validation']

num_per_shard = int(math.ceil(len(filenames) / float(_NUM_SHARDS)))

with tf.Graph().as_default():

    for shard_id in range(_NUM_SHARDS):
      output_filename = _get_dataset_filename(dataset_path, split_name, shard_id)
     
      with tf.python_io.TFRecordWriter(output_filename) as tfrecord_writer:
          start_ndx = shard_id * num_per_shard
          end_ndx = min((shard_id+1) * num_per_shard, len(filenames))
          for i in range(start_ndx, end_ndx):
              sys.stdout.write('\r>> Converting image %d/%d shard %d' % (
                      i+1, len(filenames), shard_id))
              sys.stdout.flush()

              img = load_image(filenames[i])
              image_data = tf.compat.as_bytes(img.tostring())
                
              label = labels[i]
                
              example = image_to_tfexample_mine(image_data, image_format, height, width, label)
                
              # Serialize to string and write on the file
              tfrecord_writer.write(example.SerializeToString())

sys.stdout.write('\n')
sys.stdout.flush()

def run(dataset_dir):

labels = Read_Labels(dataset_dir + '/training_labels.csv')

photo_filenames = _get_filenames_and_classes(dataset_dir + '/images_training')

shuffle_data = True 

photo_filenames, labels = Shuffle_images_with_labels(
        shuffle_data,photo_filenames, labels)

training_filenames = photo_filenames[_NUM_VALIDATION:]
training_labels = labels[_NUM_VALIDATION:]

validation_filenames = photo_filenames[:_NUM_VALIDATION]
validation_labels = labels[:_NUM_VALIDATION]

_convert_dataset('train',
                 training_filenames, training_labels, dataset_path)
_convert_dataset('validation',
                 validation_filenames, validation_labels, dataset_path)

print('\nFinished converting the Flowers dataset!')` 

And I decode it by:

`
with tf.Session() as sess:

feature = {
  'image/encoded': tf.FixedLenFeature((), tf.string, default_value=''),
  'image/format': tf.FixedLenFeature((), tf.string, default_value='jpeg'),
  'image/class/label': tf.FixedLenFeature(
      [37,], tf.float32, default_value=tf.zeros([37,], dtype=tf.float32)),
   }

filename_queue = tf.train.string_input_producer([data_path], num_epochs=1)

reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)

features = tf.parse_single_example(serialized_example, features=feature)

image = tf.decode_raw(features['image/encoded'], tf.float32)
print(image.get_shape())

label = tf.cast(features['image/class/label'], tf.float32)

image = tf.reshape(image, [224, 224, 3])

images, labels = tf.train.shuffle_batch([image, label], batch_size=10, capacity=30, num_threads=1, min_after_dequeue=10)

init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer())
sess.run(init_op)

coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)

for batch_index in range(6):
    img, lbl = sess.run([images, labels])
    img = img.astype(np.uint8)
    print(img.shape)
    for j in range(6):
        plt.subplot(2, 3, j+1)
        plt.imshow(img[j, ...])
    plt.show()

coord.request_stop()

coord.join(threads)`

It's all fine up to this point. But when I use the bellow commands for decoding TFRecord files:

`
reader = tf.TFRecordReader

keys_to_features = {
'image/encoded': tf.FixedLenFeature((), tf.string, default_value=''),
'image/format': tf.FixedLenFeature((), tf.string, default_value='raw'),
'image/class/label': tf.FixedLenFeature(
[37,], tf.float32, default_value=tf.zeros([37,], dtype=tf.float32)),
}

items_to_handlers = {
'image': slim.tfexample_decoder.Image('image/encoded'),
'label': slim.tfexample_decoder.Tensor('image/class/label'),
}

decoder = slim.tfexample_decoder.TFExampleDecoder(
keys_to_features, items_to_handlers)`


I get the following error.

INFO:tensorflow:Error reported to Coordinator: <class 'tensorflow.python.framework.errors_impl.InvalidArgumentError'>, assertion failed: [Unable to decode bytes as JPEG, PNG, GIF, or BMP]
[[Node: case/If_0/decode_image/cond_jpeg/cond_png/cond_gif/Assert_1/Assert = Assert[T=[DT_STRING], summarize=3, _device="/job:localhost/replica:0/task:0/cpu:0"](case/If_0/decode_image/cond_jpeg/cond_png/cond_gif/is_bmp, case/If_0/decode_image/cond_jpeg/cond_png/cond_gif/Assert_1/Assert/data_0)]]
INFO:tensorflow:Caught OutOfRangeError. Stopping Training.
INFO:sensorflow:Finished training! Saving model to disk.


To use Densenet for my problem, I should fix this error first.
Could anybody please help me out of this problem. This code works perfectly for the datasets like flowers, MNIST and CIFAR10 available at https://github.com/pudae/tensorflow-densenet/tree/master/datasets but does not work for my data.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

0 participants