-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathplot.py
199 lines (152 loc) · 8.59 KB
/
plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import torch
from torch_geometric.loader import DataLoader
import torch_geometric.transforms as T
import torch.optim as optim
import torch.nn.functional as F
import os
import random
from tqdm import tqdm
import argparse
import time
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import cv2
from gnn import GNN
from util import read_file, separate_data,get_scheduler, find_dataset_using_name
from plotters import create_plotter
def plot(args, model, device, multiple_loaders):
model.eval()
# Attach Forward and Backward hooks
model.zero_grad(set_to_none=True)
# Hook for activations from final FC layer
final_fc = model.graph_pred_head[0]
final_fc_hook = final_fc.register_forward_hook(model.get_layer_activation('final_fc'))
# initialize a few variables
y_true = []
y_pred = []
plotting_features = []
plotting_features_dict = {}
meta_data = pd.DataFrame()
for loader in multiple_loaders:
true_labels = list(loader.dataset.classdict.keys())
to_be_predicted_classes = list(loader.dataset.to_be_predicted_classes.keys())
dataset_features = []
for step, graph in enumerate(tqdm(loader, desc="Iteration")):
graph = graph.to(device)
dataset_name = loader.dataset.__class__.__name__
if graph.x.shape[0] == 1:
pass
else:
slide_path = graph.slide_path[0]
pred = model(graph)
y_pred = torch.argmax(pred.detach(), dim=1).view(-1, 1).cpu()
prob = F.softmax(pred.detach(), dim=1)
prob = prob.squeeze()
# pooled features
graph_features = model.layer_acts['final_fc']
graph_features = torch.flatten(graph_features, 1)
if loader.dataset.__class__.__name__ == "PcgaDataset":
key = 'pcga'
elif loader.dataset.__class__.__name__ == "CptacDataset":
key = 'cptac'
elif loader.dataset.__class__.__name__ == "CisDataset":
key = 'cis'
torch.save(graph_features, os.path.join(args.slide_feats_folder[key], slide_path+".pt"))
sample_info = pd.DataFrame([[graph.slide_path[0], true_labels[graph.y], to_be_predicted_classes[y_pred], prob[y_pred].item(), dataset_name]], \
columns=["Slide_Name", "Ground_Truth", "Hard_Class", "Prob_Confidence", "Dataset_Name"])
meta_data = pd.concat([meta_data, sample_info], ignore_index=True, axis=0)
meta_data.to_csv(os.path.join(args.log_path, "model_metadata.csv"))
# plotting_features.append(graph_features.squeeze(0).cpu().numpy())
# dataset_features.append(graph_features.squeeze(0).cpu().numpy())
# plotting_features_dict[loader.dataset.__class__.__name__] = dataset_features
""" # plotting color maps:
for p in args.plot_functions:
args.plotter = p
plotter = create_plotter(args) # create a plotter given opt.plotter and other options
plotter.set_input(plotting_features, plotting_features_dict, meta_data) # initialize and set input for plotting. This is a preprocessing step to prepare the data for plotting input.
plotter.plot() # regular step: load and print plotting info i.e data used, plotting parameter
"""
return 0
def main():
# Training settings
parser = argparse.ArgumentParser(description='GNN baselines on ogbg-ppa data with Pytorch Geometrics')
parser.add_argument('--device', type=int, default=0,
help='which gpu to use if any (default: 0)')
parser.add_argument('--gnn', type=str, default='gin',
help='GNN gin, gin-virtual, or gcn, or gcn-virtual (default: gin-virtual)')
parser.add_argument('--num_layer', type=int, default=5,
help='number of GNN message passing layers (default: 5)')
parser.add_argument('--emb_dim', type=int, default=64,
help='dimensionality of hidden units in GNNs (default: 300)')
parser.add_argument('--drop_ratio', type=float, default=0.5,
help='dropout ratio (default: 0.5)')
parser.add_argument('--jk', type=str, default='last',
help='Jumping knowledge aggregations : last | sum')
parser.add_argument('--graph_pooling', type=str, default='mean',
help='Graph pooling type : sum | mean | max | attention | set2set')
parser.add_argument('--seed', type=int, default=42,
help='random seed for splitting the dataset into 10 (default: 0)')
parser.add_argument('--num_workers', type=int, default=0,
help='number of workers (default: 0)')
parser.add_argument('--dataset', nargs='+', type=str, default="pcga",
help='dataset name (default: pcga | tcga | cis )')
parser.add_argument('--phase', type=str, default="plot",
help='dataset phase : train | test | cams')
parser.add_argument('--n_classes', type=int, default=3,
help='Number of classes')
parser.add_argument('--data_config', type=str, default="simclr_files",
help='dataset config i.e tile size and bkg content (default: simclr_8Conn_files)')
parser.add_argument('--fdim', type=int, default=512,
help='expected feature dim for each node.')
parser.add_argument('--n_folds', type=int, default=5,
help='total number of folds.')
parser.add_argument('--run_name', type=str, default="easy-wind-35",
help='run name to get all model logs')
parser.add_argument('--output', type = str, default = "logs", help='Folder in which to save the tsne plots')
parser.add_argument('--plot_functions', type=str, nargs='+', default=['tsne', 'umap'],
help='plot_functions type (default: tsne | umap)')
parser.add_argument('--cluster_variants', nargs='+', type=str, default="gt",
help='dataset name (default: gt)')
args = parser.parse_args()
### set up seeds and gpu device
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
np.random.seed(args.seed)
random.seed(args.seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
device = torch.device("cuda:" + str(args.device)) if torch.cuda.is_available() else torch.device("cpu")
args.slide_feats_folder = {}
for fold_idx in range(args.n_folds):
test_loaders = []
for item in args.dataset:
log_path = os.path.join('logs', "{}_fold_{}".format(args.run_name, fold_idx))
args.slide_feats_folder[item] = os.path.join(log_path, item.upper(), 'slide_features')
os.makedirs(args.slide_feats_folder[item], exist_ok=True)
dataset_class = find_dataset_using_name(item)
print(dataset_class)
### automatic dataloading and splitting
root = os.path.join('/SeaExp/Rushin/datasets', item.upper(), args.data_config)
wsi_file = os.path.join('/SeaExp/Rushin/datasets', item.upper(), '%s_%s.txt' % (item.upper(), args.phase))
wsi_ids = read_file(wsi_file)
test_wsi_ids = wsi_ids
test_dataset = dataset_class(root, test_wsi_ids, args.fdim, n_classes=args.n_classes, isTrain=False, transform=T.ToSparseTensor(remove_edge_index=False))
test_loaders.append(DataLoader(test_dataset, batch_size=1, shuffle=False, num_workers=args.num_workers))
# initialize model with trained weights
if args.gnn == 'gin':
model = GNN(gnn_type = 'gin', num_class = test_dataset.num_classes, num_layer = args.num_layer, input_dim = args.fdim, emb_dim = args.emb_dim, drop_ratio = args.drop_ratio, JK = args.jk, graph_pooling = args.graph_pooling).to(device)
else:
raise ValueError('Invalid GNN type')
log_path = os.path.join('logs', "{}_fold_{}".format(args.run_name, fold_idx))
model_load_path = os.path.join(f'{log_path}', f'final_model_{args.run_name}_fold_{fold_idx}.pth')
model.load_state_dict(torch.load(model_load_path))
model = model.to(device)
print("model weights loaded successfully")
args.output_folder = os.path.join(args.output, args.run_name+"_plot")
args.fold_idx = fold_idx
args.log_path = log_path
plot(args, model, device, test_loaders)
if __name__ == "__main__":
main()