-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkvagent.py
658 lines (537 loc) · 23.7 KB
/
kvagent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
# New iteration of an attempt to build VMs generating agent
import os
from pprint import pprint
import jq
import uuid
import lark
import asyncio
import yaml
from pydantic.json import pydantic_encoder
from json import dumps
from langchain.retrievers.self_query.base import SelfQueryRetriever
from langchain.retrievers.multi_query import MultiQueryRetriever
from langchain.chains.query_constructor.base import AttributeInfo
from langchain.chains import LLMChain
from langchain_community.query_constructors.chroma import ChromaTranslator
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.embeddings import SentenceTransformerEmbeddings
from langchain_community.document_loaders import JSONLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.prompts import PromptTemplate
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.documents import Document
from langchain_core.runnables import RunnablePassthrough
from langchain_core.output_parsers import StrOutputParser
from langchain_core.output_parsers import JsonOutputParser
from langchain_core.output_parsers.openai_functions import JsonOutputFunctionsParser
from langchain.output_parsers import PydanticOutputParser
from langchain.output_parsers.yaml import YamlOutputParser
import chromadb.utils.embedding_functions as embedding_functions
from typing import List, Optional, Dict
import chromadb
from langchain_community.vectorstores import Chroma
from langgraph.graph import StateGraph, END
from langchain_groq import ChatGroq
from langchain_openai import ChatOpenAI
from kvtypes import *
from kvtypes import RelatedInstanceTypes, CallAgent, DataVolumeTemplateSpec, Volume
from vmpreferences import prefs_document_content_description, prefs_metadata_field_info
from vminstancetypes import instTypes_metadata_field_info, instTypes_document_content_description
from bootableSources import find_bootable_sources, bootSrcs_document_content_description, bootSrcs_metadata_field_info
import sys
import logging
logger = logging.getLogger(__name__)
handler = logging.StreamHandler(stream=sys.stdout)
logger.addHandler(handler)
model_name = "BAAI/bge-base-en-v1.5"
encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity
#bge_embeddings = HuggingFaceBgeEmbeddings(
# model_name=model_name,
# model_kwargs={'device': 'cuda'},
# encode_kwargs=encode_kwargs
#)
embedding_model=model_name
#embedding_func = embedding_functions.SentenceTransformerEmbeddingFunction(model_name=embedding_model, device="cuda", normalize_embeddings=True)
#e = SentenceTransformerEmbeddings(model_name=embedding_model, model_kwargs={'device': 'cuda'}, encode_kwargs=encode_kwargs)
embedding_func = embedding_functions.SentenceTransformerEmbeddingFunction(model_name=embedding_model, normalize_embeddings=True)
e = SentenceTransformerEmbeddings(model_name=embedding_model, encode_kwargs=encode_kwargs)
persist_directory = 'db'
client = chromadb.PersistentClient(path=persist_directory)
# we will need two collections. One for instance types and another for preferences
collectionInstTypes = client.get_or_create_collection("instanceTypes",
embedding_function=embedding_func)
collectionPref = client.get_or_create_collection("prefs",
embedding_function=embedding_func)
collectionBootSources = client.get_or_create_collection("bootSrcs",
embedding_function=embedding_func)
def load_bootable_sources():
docs = []
srcs = find_bootable_sources()
for doc in srcs:
docs.append(Document(
page_content=doc['description'],
metadata={"name": doc['name']}))
return docs
def fix_metadata(original_metadata):
new_metadata = {}
for k, v in original_metadata.items():
if type(v) in [str, int, float]:
# str, int, float are the types chroma can handle
new_metadata[k] = v
elif isinstance(v, list):
new_metadata[k] = ','.join(v)
else:
# e.g. None, bool
new_metadata[k] = str(v)
return new_metadata
def split_json_docs(documents, chunk_size=1000, chunk_overlap=0):
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
docs = text_splitter.split_documents(documents)
for doc in docs:
doc.metadata=doc.metadata
return docs
def metadata_func(record: dict, metadata: dict) -> dict:
record = record['metadata']
for key, val in record.items():
metadata[key] = val
return metadata
def loadCollection(collection, documents):
names = set()
split_json_documents = split_json_docs(documents)
for doc in split_json_documents:
if doc.metadata['name'] not in names:
collection.add(
ids=[str(uuid.uuid1())],
metadatas=doc.metadata,
documents=doc.page_content
)
names.add(doc.metadata['name'])
if collectionInstTypes.count() < 1:
instanceTypesFile = "./formattedInstTypesCollection.json"
loader = JSONLoader(file_path=instanceTypesFile, jq_schema=".VirtualMachineInstancetypes[]", content_key="description", metadata_func=metadata_func) ## text_content=False)
documents = loader.load()
loadCollection(collectionInstTypes, documents)
if collectionPref.count() < 1:
instancePrefsFile = "./formattedPrefCollection.json"
loaderPrefs = JSONLoader(file_path=instancePrefsFile, jq_schema=".VirtualMachinePreferences[]", content_key="description", metadata_func=metadata_func) ## text_content=False)
prefDocs = loaderPrefs.load()
loadCollection(collectionPref, prefDocs)
# load boot sources
loadCollection(collectionBootSources, load_bootable_sources())
# Load LLM
#llama3-70b-8192
#"llama2-70b-4096"
#"gemma-7b-it"
GROQ_LLM = ChatGroq(
model="llama3-70b-8192",
temperature=0,
)
llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0)
vectordbInstTypes = Chroma(persist_directory=persist_directory, embedding_function=e, collection_name = 'instanceTypes')
vectordbPrefs = Chroma(persist_directory=persist_directory, embedding_function=e, collection_name = 'prefs')
vectordbBootSrcs = Chroma(persist_directory=persist_directory, embedding_function=e, collection_name = 'bootSrcs')
retrieverInstTypes = SelfQueryRetriever.from_llm(
llm,
vectordbInstTypes,
instTypes_document_content_description,
instTypes_metadata_field_info,
verbose=True,
structured_query_translator = ChromaTranslator(),
fix_invalid=True,
)
retrieverPrefs = SelfQueryRetriever.from_llm(
llm,
vectordbPrefs,
prefs_document_content_description,
prefs_metadata_field_info,
verbose=True,
structured_query_translator = ChromaTranslator(),
fix_invalid=True,
)
retrieverBootSources = SelfQueryRetriever.from_llm(
llm,
vectordbBootSrcs,
bootSrcs_document_content_description,
bootSrcs_metadata_field_info,
verbose=True,
structured_query_translator = ChromaTranslator(),
fix_invalid=True,
)
#Build the vector retrievers
gen_instances_prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"""You need to select a single most suitable instance type from the provided context. Your answer should be based on the user query which contains the requirements for defining a virtual machine. Here is the context: {context}. If you don't know the answer, just say that you don't know.""",
),
("user", "Query: {query}"),
]
)
gen_instTypes_chain = gen_instances_prompt | llm.with_structured_output(RelatedInstanceTypes)
gen_preferences_prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"""You need to select a single most suitable virtual machine preference from the provided context. Your answer should be based on the user query which contains the requirements for defining a virtual machine. Here is the context: {context}. If you don't know the answer, just say that you don't know.""",
),
("user", "Query: {query}"),
]
)
gen_preferences_chain = gen_preferences_prompt | llm.with_structured_output(RelatedPreferences)
#Generate initial Virtual Machine draft
gen_vm_prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"You are a virtual machine configuration writer. Write a configuration for a virtual machine based on a user-provided request. Be very specific.",
),
("user", "{request}"),
]
)
generate_vm = gen_vm_prompt | GROQ_LLM.with_structured_output(
VirtualMachine
)
async def generate_draft_vm(state: VmCreationState):
definition = state["definition"]
# Query rewriting prompt
#rewriting_prompt = PromptTemplate.from_template(
# "Rewrite the following query by extracting the specific requirements for defining a virtual machine from the use query. Use only the words from the use query. Do not add any new requirements: {query}"
#)
# LLM Chain for query rewriting
#rewriting_chain = rewriting_prompt| GROQ_LLM| StrOutputParser()
# Run the chain
#definition = await rewriting_chain.ainvoke({"query": definition})
results = await generate_vm.ainvoke({"request": definition})
return {
**state,
"definition": definition,
"virtualMachine": results,
}
async def retrieve_instance_type(state: VmCreationState):
definition = state["definition"]
vmdef = state["virtualMachine"]
try:
CONTEXT = await retrieverInstTypes.ainvoke(definition)
except:
CONTEXT=[]
if len(CONTEXT) == 0:
retriever_from_llm = MultiQueryRetriever.from_llm(vectordbInstTypes.as_retriever(), llm=llm)
CONTEXT = await retriever_from_llm.ainvoke(definition)
result = await gen_instTypes_chain.ainvoke({"query": definition, "context":CONTEXT})
if result is None:
result = {"instanceTypes": [{"name": "no instance type"}]}
vmdef.spec.instancetype.name = result.instanceTypes[0].name
return {
**state,
"virtualMachine": vmdef,
}
async def retrieve_preference(state: VmCreationState):
definition = state["definition"]
vmdef = state["virtualMachine"]
try:
CONTEXT = await retrieverPrefs.ainvoke(definition)
except:
CONTEXT=[]
if len(CONTEXT) == 0:
retriever_from_llm = MultiQueryRetriever.from_llm(vectordbPrefs.as_retriever(), llm=llm)
CONTEXT = await retriever_from_llm.ainvoke(definition)
result = await gen_preferences_chain.ainvoke({"query": definition, "context":CONTEXT})
if result is None:
result = {"preferences": [{"name": "no preference"}]}
vmdef.spec.preference.name = result.preferences[0].name
return {
**state,
"virtualMachine": vmdef,
"complited": True,
}
async def finalize(state: VmCreationState):
if state["complited"]:
return END
return "init_vm"
async def handle_volumes(state: VmCreationState):
definition = state["definition"]
vm = state["virtualMachine"]
# Query rewriting prompt to find out which OS should be used for boot
os_query_prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"Your goal is to understand what operating system should be used to boot the virtual machine the user is requesting in the user query. If the user didn't explicitly mentoin the operating system, please assume that it's Fedora. Then, compose a qestion for a vector store retriever to explicitly retrieve the desired operating system.",
),
("user", "Query: {query}"),
]
)
# LLM Chain for query rewriting
rewriting_chain = os_query_prompt| GROQ_LLM| StrOutputParser()
# Run the chain
definition = await rewriting_chain.ainvoke({"query": definition})
try:
CONTEXT = await retrieverBootSources.ainvoke(definition)
except:
CONTEXT=[]
if len(CONTEXT) == 0:
retriever_from_llm = MultiQueryRetriever.from_llm(vectordbBootSrcs.as_retriever(), llm=llm)
CONTEXT = await retriever_from_llm.ainvoke(definition)
if len(CONTEXT) > 0:
context_prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"Use the provided context {context} to select only oned atavolume source, most suitable for the requestion operating system in the user query. if the user didn't request any specific operating system, assume fedora is most suitable.",
),
("user", "Query: {query}"),
]
)
gen_boot_source_chain = context_prompt | llm.with_structured_output(RelatedBootSource)
result = await gen_boot_source_chain.ainvoke({"query": definition, "context":CONTEXT})
if result:
# ---- rewrite the volume section
rewrite_volumes_prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"Generate a data volume template based on the provided context: {context}. The datavolume name must be the name provided in the context.",
),
]
)
gen_boot_source_chain = rewrite_volumes_prompt | llm.with_structured_output(DataVolumeTemplateSpec)
datavolume = await gen_boot_source_chain.ainvoke({"context": result.bootsources[0].name})
vm.spec.dataVolumeTemplates = [datavolume]
# Convert the Pydantic object to a dictionary
if isinstance(vm, dict):
vm_dict = vm
else:
vm_dict = vm.dict()
# Convert the vol dictionary to a json string
json_vol_string = dumps(vm_dict['spec']['template']['spec']['volumes'])
vmspec = dumps(vm_dict)
vol_context_prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"Rewrite the provided volumes section {volumes} based on the requrements provided by the user query. One of the volumes must be a dataVolume. The dataVolume name must exactly match the provided {dname}. The number of volumes must be equal to the number of disks and the name of the volume must be identical to the name of the corresponding disk from the context {context}",
),
("user", "Query: {query}"),
]
)
gen_vol_chain = vol_context_prompt | llm.with_structured_output(RelatedVolumes)
volumes = await gen_vol_chain.ainvoke({"dname": datavolume.metadata.name, 'volumes': json_vol_string, "query": definition, "context": vmspec})
try:
for idx in range(len(volumes.volumes)):
if volumes.volumes[idx].dataVolume:
volumes.volumes[idx].dataVolume.name = datavolume.metadata.name
except Exception as e:
print("ERROR: %s" % e)
vm.spec.template.spec.volumes = volumes.volumes
return {
**state,
"virtualMachine": vm,
}
vm_builder = StateGraph(VmCreationState)
nodes = [
("init_vm", generate_draft_vm),
("retrieve_instance_type", retrieve_instance_type),
("retrieve_preference", retrieve_preference),
("handle_volumes", handle_volumes),
]
for i in range(len(nodes)):
name, node = nodes[i]
vm_builder.add_node(name, node)
if i > 0:
vm_builder.add_edge(nodes[i - 1][0], name)
vm_builder.add_conditional_edges("retrieve_preference", finalize)
vm_builder.set_entry_point(nodes[0][0])
vm = vm_builder.compile(debug=True).with_config(run_name="Construct Virtual Machine configuration")
class AssistantState(TypedDict):
message: str
response: str
callAgent: str
async def get_supervisor_response(state: AssistantState):
if state["response"]:
return {
**state,
"callAgent": "END",
}
system_prompt = (
"You are a supervisor tasked to choose which agent to run between"
" following workers: {members}. Evaluate the following user request,"
" you should respond with VMBuilder only if the user explicitly requests to build, compose, generate or construct a configuration for a Virtual Machine."
" You must return InstanceTypeLookup if the user is asking about virtual machine instance types or simply instance types. InstanceTypeLookup is not a tool, but a name of a member."
" For questions about preferences or virtual machine preferences you should respond with PreferencesLookup. PreferencesLookup is not a tool, but a name of a member."
" If the user is inquiring boot sources, operating systems to boot from or images that can be used for booting a virtual machine, you should respond with BootSourceLookup. BootSourceLookup is not a tool or a function, but a name of a member."
" For any other questions you should respond with LLM."
)
query = state["message"]
members = ["VMBuilder", "InstanceTypeLookup", "PreferencesLookup", "BootSourceLookup", "LLM"]
prompt = ChatPromptTemplate.from_messages(
[
("system", system_prompt),
("user", "Query: {query}"),
(
"system",
"Given the user query above, who should act next?"
"Select one of: {options}",
),
]
)
gen_callagent_chain = prompt | GROQ_LLM.with_structured_output(CallAgent)
result = await gen_callagent_chain.ainvoke({"query": query, "members":", ".join(members), "options": str(members)})
return {
**state,
"callAgent": result.callAgent,
}
async def get_response_from_llm(state: AssistantState):
query = state["message"]
# Query rewriting prompt
prompt = PromptTemplate.from_template(
"You are a helpfull assistant, please answer the user query the best you can: {query}"
)
# LLM Chain to answer use query
chain = prompt| GROQ_LLM| StrOutputParser()
# Run the chain
result = await chain.ainvoke({"query": query})
return {
**state,
"response": result,
}
async def lookup_instance_types(state: AssistantState):
query = state["message"]
try:
CONTEXT = await retrieverInstTypes.ainvoke(query, search_kwargs={"k":100})
except:
CONTEXT=[]
try:
retriever_from_llm = MultiQueryRetriever.from_llm(vectordbInstTypes.as_retriever(search_kwargs={"k": 100}), llm=llm)
CONTEXT1 = await retriever_from_llm.ainvoke(query)
except Exception as e:
CONTEXT1 = []
CONTEXT=CONTEXT+CONTEXT1
prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"""You are an expert on virtual machine instance types. you need to help answering questions about instance type from the provided context. Your answer should be based on the user query which contains the requirements. Here is the context: {context}. If you don't know the answer, just say that you don't know.""",
),
("user", "Query: {query}"),
]
)
chain = prompt| GROQ_LLM| StrOutputParser()
# Run the chain
result = await chain.ainvoke({"query": query, "context": CONTEXT})
return {
**state,
"response": result,
}
async def lookup_preferences(state: AssistantState):
query = state["message"]
try:
CONTEXT = await retrieverPrefs.ainvoke(query)
except:
CONTEXT=[]
try:
retriever_from_llm = MultiQueryRetriever.from_llm(vectordbPrefs.as_retriever(search_kwargs={"k": 100}), llm=llm)
CONTEXT1 = await retriever_from_llm.ainvoke(query)
except Exception as e:
CONTEXT1 = []
CONTEXT=CONTEXT+CONTEXT1
prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"""You are an expert on virtual machine preferences. You need to help answering questions about these preferences from the provided context. Your answer should be based on the user query which contains the requirements. Here is the context: {context}. If you don't know the answer, just say that you don't know.""",
),
("user", "Query: {query}"),
]
)
chain = prompt| GROQ_LLM| StrOutputParser()
# Run the chain
result = await chain.ainvoke({"query": query, "context": CONTEXT})
return {
**state,
"response": result,
}
async def lookup_bootsources(state: AssistantState):
query = state["message"]
try:
CONTEXT = await retrieverBootSources.ainvoke(query)
except:
CONTEXT=[]
try:
retriever_from_llm = MultiQueryRetriever.from_llm(vectordbBootSrcs.as_retriever(search_kwargs={"k": 100}), llm=llm)
CONTEXT1 = await retriever_from_llm.ainvoke(query)
except Exception as e:
CONTEXT1 = []
CONTEXT=CONTEXT+CONTEXT1
prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"""You need to help answering questions about available operating systems that can be used as a boot source from the provided context. Your answer should be based on the user query which contains the requirements. Here is the context: {context}. If you don't know the answer, just say that you don't know.""",
),
("user", "Query: {query}"),
]
)
chain = prompt| GROQ_LLM| StrOutputParser()
# Run the chain
result = await chain.ainvoke({"query": query, "context": CONTEXT})
return {
**state,
"response": result,
}
async def build_vm_config(astate: AssistantState):
query = astate["message"]
# Run the chain
try:
result = await vm.ainvoke({"definition": query})
except Exception as e:
result = {"retrieve_preference": {"virtualMachine": {}}}
logger.info("result :")
logger.info(result)
try:
complete_vm = result["__end__"]["virtualMachine"]
except:
try:
complete_vm = result["virtualMachine"]
except:
complete_vm = {}
# Convert the Pydantic object to a dictionary
if isinstance(complete_vm, dict):
vm_dict = complete_vm
else:
vm_dict = complete_vm.dict()
# Convert the dictionary to a YAML string
yaml_string = yaml.dump(vm_dict)
# Print the YAML string
rewriting_answer = PromptTemplate.from_template(
"Convert the provided output into YAML. Do not add any new fields {output}"
)
res_chain = rewriting_answer| GROQ_LLM| StrOutputParser()
res = await res_chain.ainvoke(yaml_string)
return {
**astate,
"response": res,
}
supervisor_builder = StateGraph(AssistantState)
supervisor_builder.add_node("supervisor", get_supervisor_response)
supervisor_builder.add_node("VMBuilder", build_vm_config)
supervisor_builder.add_node("PreferencesLookup", lookup_preferences)
supervisor_builder.add_node("InstanceTypeLookup", lookup_instance_types)
supervisor_builder.add_node("BootSourceLookup", lookup_bootsources)
supervisor_builder.add_node("LLM", get_response_from_llm)
supervisor_builder.add_edge("VMBuilder", "supervisor")
supervisor_builder.add_edge("PreferencesLookup", "supervisor")
supervisor_builder.add_edge("InstanceTypeLookup", "supervisor")
supervisor_builder.add_edge("BootSourceLookup", "supervisor")
supervisor_builder.add_edge("LLM", "supervisor")
supervisor_builder.add_conditional_edges(
"supervisor",
lambda x: x["callAgent"],
{"VMBuilder": "VMBuilder",
"InstanceTypeLookup": "InstanceTypeLookup",
"PreferencesLookup": "PreferencesLookup",
"BootSourceLookup": "BootSourceLookup",
"END": END,
"LLM": "LLM"},
)
supervisor_builder.set_entry_point("supervisor")
agent_supervisor = supervisor_builder.compile(debug=True)