-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathSessionPlots.m
165 lines (148 loc) · 7.39 KB
/
SessionPlots.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
% plot results from recording session plots
spikeSortingFiles = cellfun(@(fileFormat) dir([cd filesep '**' filesep fileFormat]),...
{'*.result.hdf5','*_jrc.mat','*.csv'},'UniformOutput', false);
spikeSortingFiles=vertcat(spikeSortingFiles{~cellfun('isempty',spikeSortingFiles)});
% do not include those files:
spikeSortingFiles=spikeSortingFiles(~cellfun(@(flnm) contains(flnm,{'DeepCut'}),...
{spikeSortingFiles.name}));
sessionDir=cd;
dataFiles = cellfun(@(fileFormat) dir([cd filesep '**' filesep fileFormat]),...
{'*.dat','*raw.kwd','*RAW*Ch*.nex','*.ns*'},'UniformOutput', false);
dataFiles=vertcat(dataFiles{~cellfun('isempty',dataFiles)});
% keep those files
TTLFiles=dataFiles(cellfun(@(flnm) contains(flnm,{'_TTLs'}),...
{dataFiles.name}));
dataFiles=dataFiles(cellfun(@(flnm) contains(flnm,{'_export'}),...
{dataFiles.name}));
% for recNum=1:size(spikeSortingFiles,1)
recNum=3;
recDir=spikeSortingFiles(recNum).folder;
recName=spikeSortingFiles(recNum).name;
cd(recDir)
dataFileIdx=cellfun(@(datF) contains(datF,regexp(recName,'\S+?(?=\.\w+\.\w+$)','match','once')) ,...
{dataFiles.name});
dataFileName=dataFiles(dataFileIdx).name;
dataFileDir=dataFiles(dataFileIdx).folder;
traces = memmapfile(fullfile(dataFileDir,dataFileName),'Format','int16');
spikes=LoadSpikeData(recName,traces);
%% load TTLs
cd(sessionDir);
TTLFileName=[regexp(recName,'\S+?(?=_export)','match','once') '_TTLs.dat'];
fid = fopen(TTLFileName, 'r');
TTLs = fread(fid,[2,Inf],'int32');
fclose(fid);
%% add voltage scaling factor and sampling rate
bitResolution=0.195; %for Open Ephys
spikes.waveforms=spikes.waveforms.*bitResolution;
samplingRate=30000;
%
spikes.unitID=double(spikes.unitID);
% find most frequent units
[unitFreq,unitIDs]=hist(spikes.unitID,unique(spikes.unitID));
[unitFreq,freqIdx]=sort(unitFreq','descend');
unitFreq=unitFreq./sum(unitFreq)*100; unitIDs=unitIDs(freqIdx);
bestUnitsIdx=find(unitFreq>2);
bestUnits=unitIDs(unitIDs(bestUnitsIdx)>=~0);
% bestUnits=0;
% %% generate rasters
preAlignWindow=500; postAlignWindow=2000;
spikeRasters=PopulationRaster(spikes.times,TTLs(1,:),bestUnits,...
spikes.unitID,samplingRate,preAlignWindow,postAlignWindow);
%% plots
% phototagging
pulseDur=mode(diff(TTLs));
IPI=mode(diff(TTLs(1,:)))+pulseDur;
figure; SDFh=subplot(1,1,1);
OptoSDF(spikeRasters,preAlignWindow,pulseDur,IPI,SDFh)
% sdf=conv_raster(spikeRasters{4},conv_sigma,1);
%
%
% conv_sigma=1;shiftVal=conv_sigma*3;
% allSDF=vertcat(spikeRasters{:});
% figure;
% colormap(hot) %flipud(gray));
% imagesc(allSDF); %
% % caxis([0 200])
% xlabel('Time (ms)');
% ylabel('Neuron#','FontSize',12); %'FontWeight','bold'
% % draw alignment bar
% currylim=get(gca,'YLim');
% % currxlim=get(gca,'XLim');%midl=round(currxlim(2)/20)*10;
% % set(gca,'XTick',preAlignWindow:50:max(get(gca,'xlim')));
% % set(gca,'XTickLabel',0:50:max(get(gca,'xlim'))-preAlignWindow,'FontSize',10,'FontName','calibri','TickDir','out');
% set(gca,'XLim',[0.5 preAlignWindow+660.5],'XTick',[0:10:preAlignWindow+660]-shiftVal);
% set(gca,'XTickLabel',(0:10:preAlignWindow+660)-preAlignWindow,'FontSize',10,'FontName','calibri','TickDir','out');
%
% %opto stim patch
% patch([preAlignWindow-shiftVal preAlignWindow-shiftVal preAlignWindow+pulseDur preAlignWindow+pulseDur], ...
% [[0 currylim(2)] fliplr([0 currylim(2)])], ...
% [0 0 0 0],[0.3 0.75 0.93],'EdgeColor','none','FaceAlpha',0.5);
% set(gca,'Color','white','FontSize',18,'FontName','Helvetica');
% end
% spike summary
figure('name',regexp(recName,'\S+?(?=\.\w+\.\w+$)','match','once'))
colormapSeed=lines;
cmap=[colormapSeed(1:7,:);(colormapSeed+flipud(colormap(copper)))/2;autumn];
for unitNum=bestUnits'
unitIdx=find(unitIDs==unitNum)-1;
%spike times for that unit
unitSpikeTimes=spikes.times(spikes.unitID==unitNum);
if ~isempty(diff(unitSpikeTimes))
% Plot ISI
subplot(3,numel(bestUnits),unitIdx)
% compute interspike interval
ISI=diff(unitSpikeTimes)/(samplingRate/1000);
ISIhist=histogram(double(ISI),logspace(0, 4, 50),'DisplayStyle','stairs','LineWidth',1.5); %,'Normalization','probability'
% ISIhist.FaceColor = handles.cmap(unitID(unitID==selectedUnits),:);
ISIhist.EdgeColor = cmap(unitIdx,:); %'k';
xlabel('Interspike Interval (ms)')
axis('tight');box off; grid('on'); set(gca,'xscale','log','GridAlpha',0.25,'MinorGridAlpha',1);
set(gca,'xlim',[0 10^4],... %'XTick',linspace(0,40,5),'XTickLabel',linspace(0,40,5),...
'TickDir','out','Color','white','FontSize',10,'FontName','Calibri');
% Plot autocorrelogram
subplot(3,numel(bestUnitsIdx)-1,unitIdx+numel(bestUnitsIdx)-1)
% change spiketimes to ms timescale
unitSpikeTimes=unitSpikeTimes/(samplingRate/1000);
spikeTimeIdx=zeros(1,unitSpikeTimes(end));
spikeTimeIdx(unitSpikeTimes)=1;
binSize=1;
numBin=ceil(size(spikeTimeIdx,2)/binSize);
binUnits = histcounts(double(unitSpikeTimes), linspace(0,size(spikeTimeIdx,2),numBin));
binUnits(binUnits>1)=1; %no more than 1 spike per ms
% compute autocorrelogram
[ACG,lags]=xcorr(double(binUnits),200,'unbiased'); %'coeff'
ACG(lags==0)=0;
ACGh=bar(lags,ACG);
ACGh.FaceColor = cmap(unitIdx,:);
ACGh.EdgeColor = 'none';
% axis('tight');
box off; grid('on'); %set(gca,'yscale','log','GridAlpha',0.25,'MinorGridAlpha',1);
xlabel('Autocorrelogram') %(1 ms bins)
set(gca,'xlim',[-20 20],...
'ylim',[0 max(get(gca,'ylim'))],...
'Color','white','FontSize',10,'FontName','Calibri','TickDir','out');
end
% Plot the mean waveform
subplot(3,numel(bestUnitsIdx)-1,unitIdx+(numel(bestUnitsIdx)-1)*2)
unitWF=single(spikes.waveforms(spikes.unitID==unitNum,:));
if isempty(find(isnan(mean(unitWF)), 1))
plot(mean(unitWF),'linewidth',2,'Color',[cmap(unitIdx,:),0.7]);
wfSEM=std(unitWF)/ sqrt(size(unitWF,2)); %standard error of the mean
wfSEM = wfSEM * 1.96; % 95% of the data will fall within 1.96 standard deviations of a normal distribution
patch([1:length(wfSEM),fliplr(1:length(wfSEM))],...
[mean(unitWF)-wfSEM,fliplr(mean(unitWF)+wfSEM)],...
cmap(unitIdx,:),'EdgeColor','none','FaceAlpha',0.2);
end
set(gca,'XTick',linspace(0,size(unitWF,2),5),...
'XTickLabel',round(linspace(-round(size(unitWF,2)/2),...
round(size(unitWF,2)/2),5)/(double(samplingRate)/1000),2),'TickDir','out');
axis('tight');box off;
xlabel('Time (ms)');
ylabel('Voltage (\muV)');
end
% %plot the amplitude
% for unitNum=bestUnits'
% figure
% plot(spikes.times(spikes.unitID==unitNum-1),spikes.amplitude(spikes.unitID==unitNum-1), '.')
% end
% end