forked from hornos/lev00
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlev_coulmb.f90
1105 lines (1085 loc) · 40.8 KB
/
lev_coulmb.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
subroutine lev_coulmb()
!.........................................................................
! Calculates the Coulomb potential (in Ev unless factor=/=1.0) from a
! point-ion lattice in an arbitrary point inside the UC, as well as along
! a line or in a plane.
!.........................................................................
! Charge(species) - ionic charge on each species;
! Q(ion) - ionic charge on each ion in the cell.
! QradI(ion) - atomic radius for the ion used to eliminate
! a singularity in the Madelung potential within the
! sphere of this radius near the ion (in menu.inc);
! QradS(species) - atomic radius for the species (is used to build up QradI)
!.........................................................................
! DIRC - direct lattice vectors
! RECC - reciprocal lattice vectors (with 2*pi)
! VOLC - unit cell volume
!..................................................................
! BCELL - reciprocal lattice vectors (without 2*pi)
!..................................................................
use param
use atoms
use code
use menu
implicit none
real*8 a(3),x(3),tot,dist,distm,dd
real*8,dimension(:),allocatable :: qCharge,Q,QradS
character cha,cha2*2,filen*12
real*8 :: pi=3.141592654,EPSew=1.0E-10,factor=1.0,tiny=0.00001,gEwald,EPSx
integer :: iCharge=0,iChargeS=0,mCharge=0,iOver=0
integer i,j,ijk,lenght,iQuit, iCheck,i1,item,ion
integer iOverlp,ion1,k
!................... memory
allocate(qCharge(NIONS))
allocate(Q(NIONS))
allocate(QradS(NSPEC))
!........... do BCELL = RECC/(2*pi) - it is used in transforming
! grid point coordinates
!
do i=1,3
do j=1,3
BCELL(i,j)=RECC(i,j)/(2*pi)
end do
end do
!
!.......... The "best" Ewald constant gEwald is estimated as:
!
call best_Ewald(DIRC,BCELL,gEwald)
!
!...................... RUN a MENU here ...........................
!....... set up charges, precision, the point of interest (Pnt)
! and a multiplication factor
!..................................................................
!
!....................................................................
!............ General part: let us plot just once ...................
!....................................................................
!.... ijk - counts different cycles of calculations (not more than 9),
! i.e. different plots
!
ijk=1
!
!............ name of the file for the output
!
2 if(ijk.le.9) then
write(cha,'(i1)') ijk
filen='mad.dat.'//cha
lenght=9
else if(ijk.le.99) then
write(cha2,'(i2)') ijk
filen='mad.dat.'//cha2
lenght=10
else
write(*,*)'LEV_COULMB: You cannot trial my patience so much!'
go to 200
end if
iQuit=0
iCheck=0
!
!____________ choose between a line, plane or charge
!
write(*,*)'..............MENU for Madelung potential ...........'
write(*,*)'......... Change these parameters if necessary: .....'
write(*,*)
write(*,'(a33,i2)')' NUMBER OF THE CURRENT PLOT: ',ijk
write(*,*)
write(*,'(a)')' 0. Coordinates are specified in: '//angstr
if(mCharge.eq.0) then
write(*,'(a)') ' 1. Charges on all species are the same: YES'
else
write(*,'(a)') ' 1. Charges on all species are the same: NO'
end if
if(iChargeS.eq.0) then
if(mCharge.eq.0) then
iQuit=1
write(*,'(a)') ' 2. Charges on species: ....... undefined .......'
else
write(*,'(a)') ' 2. Charges on species (not used): UNKNOWN'
end if
else
write(*,'(a)') ' 2. Charges on species: KNOWN'
end if
if(iCharge.eq.0) then
iQuit=1
write(*,'(a)') ' 3. Charges on ions: ....... undefined .......'
else
write(*,'(a)') ' 3. Charges on ions: KNOWN'
end if
write(*,'(a35,e12.6)')' 4. Precision of the summations: ',EPSew
EPSx=-log(EPSew)
write(*,'(a29,e12.6)')' 5. Multiplication factor: ',factor
write(*,'(a)') &
' 6. Calculate the potential at a single point (Volts*factor)'
if(iOver.eq.0) then
write(*,'(a)') &
' 7. Atomic radii (only line/plane): ..... undefined .....'
else
write(*,'(a)') &
' 7. Atomic radii (only line/plane) are given for species:'
do i=1,NSPEC,6
i1=i+5
if(i1.gt.NSPEC) i1=NSPEC
write(*,'(7x,6(f8.5,1x))') (QradS(j),j=i,i1)
end do
end if
write(*,'(a)') ' 8. Calculate the potential along a line (in eV*factor)'
write(*,'(a)') ' 9. Calculate the potential in a plane (in eV*factor)'
write(*,'(a)') ' 10. Quit'
write(*,*)
write(*,*)'------> Choose the item and press ENTER:'
read(*,*,err=100) item
!
!__________ choose the way how the coordinates are given
!
if(item.eq.0) then
if(angstr.eq.'<Fractional>') then
angstr='<Angstroms> '
else if(angstr.eq.'<Angstroms> ') then
angstr='<AtomNumber>'
else if(angstr.eq.'<AtomNumber>') then
angstr='<Fractional>'
end if
!
!__________ choose the method: individually for all ions or through
! the species
!
else if(item.eq.1) then
if(mCharge.eq.0) then
mCharge=1
else
mCharge=0
end if
!
!__________ specify charges on species and assign these charges to
! all ions in Q(ion):
!
else if(item.eq.2) then
20 if(mCharge.eq.0) then
write(*,'(a22,i2,a9)') 'Give charges for each ',NSPEC,' species:'
write(*,'(10(a,x))') (Species(i),i=1,NSPEC)
read(*,*,err=20) (qCharge(i),i=1,NSPEC)
iChargeS=1
write(*,*)'______ charges on ions: ________'
ion=0
tot=0.0
do i=1,NSPEC
do j=1,NspN(i)
ion = ion +1
Q(ion)=qCharge(i)
tot=tot+Q(ion)
write(*,'(a,a,i2,a,i3,a,f10.5)') &
Species(i),' #=',j,' Q(',ion,')=',Q(ion)
end do
end do
write(*,*)'________________________________'
if(abs(tot).gt.tiny) then
write(*,*)'ERROR! Your unit cell is not neutral!'
write(*,*)'Total charge = ', tot
go to 20
end if
iCharge=1
else
write(*,*)'WANRNING! You do NOT need them unless the option 2 is YES!'
end if
!
!__________ specify charges for all ions in the cell individually
!
else if(item.eq.3) then
29 if(mCharge.eq.1) then
write(*,*) 'Give ionic charges individually (in the order):'
ion=1
do i=1,NSPEC
30 write(*,'(a17,i2,a2,i2,a6)') &
'____ The species ',i,': ',NspN(i),' ions:'
read(*,*,err=30) (Q(k),k=ion,ion+NspN(i)-1)
ion=ion+NspN(i)
end do
iCharge=1
write(*,*)'______ charges on ions: ________'
ion=0
tot=0.0
do i=1,NSPEC
do j=1,NspN(i)
ion = ion +1
write(*,'(a4,i2,a3,i2,a3,i3,a2,f10.5)') &
' sp=',i,' #=',j,' Q(',ion,')=',Q(ion)
tot=tot+Q(ion)
end do
end do
write(*,*)'________________________________'
if(abs(tot).gt.tiny) then
write(*,*)'ERROR! Your unit cell is not neutral!'
go to 29
end if
else
write(*,*) 'WANRNING! You do NOT need them unless the option 2 is NO!'
end if
!
!__________ specify the precision of the summations in the Ewald method
!
else if(item.eq.4) then
40 write(*,*)'Give the precision:'
read(*,*,err=40) EPSew
if(EPSew .lt. 1.0e-13) go to 40
!
!__________ specify the multiplication factor
!
else if(item.eq.5) then
45 write(*,*)'Give the multiplication factor:'
read(*,*,err=45) factor
!
!__________ Madelung potential at a point
!
else if(item.eq.6) then
if(iQuit.eq.1) then
write(*,*)'ERROR! You still have undefined parameters!'
go to 2
end if
call pointM(Q,factor,gEwald,EPSx)
ijk=ijk+1
!
!__________ specify atomic radii for every species to eliminate
! singularities near atoms while making plots. Then we check,
! whether the spheres overlap: they should not.
!
else if(item.eq.7) then
46 write(*,*)'Give atomic radii (in Angstroms) for every ', &
NSPEC,' species:'
read(*,*,err=46) (QradS(j),j=1,NSPEC)
ion=0
do i=1,NSPEC
do j=1,NspN(i)
ion = ion +1
QradI(ion)=QradS(i)
write(*,'(a4,i2,a3,i2,a7,i3,a2,f10.5)') &
' sp=',i,' #=',j,' QradI(',ion,')=',QradI(ion)
end do
end do
write(*,*)'Checking if the spheres overlap ...'
iOverlp=0
do ion=1,NIONS
do 50 ion1=ion,NIONS
if(ion.eq.ion1) go to 50
a(1)=TI(1,ion)-TI(1,ion1)
a(2)=TI(2,ion)-TI(2,ion1)
a(3)=TI(3,ion)-TI(3,ion1)
distm=sqrt(a(1)*a(1)+a(2)*a(2)+a(3)*a(3))
do i=-1,1
do j=-1,1
do k=-1,1
x(1) = i*DIRC(1,1)+j*DIRC(2,1)+k*DIRC(3,1) + a(1)
x(2) = i*DIRC(1,2)+j*DIRC(2,2)+k*DIRC(3,2) + a(2)
x(3) = i*DIRC(1,3)+j*DIRC(2,3)+k*DIRC(3,3) + a(3)
dist=sqrt(x(1)*x(1)+x(2)*x(2)+x(3)*x(3))
if(dist.lt.distm) distm=dist
end do
end do
end do
dd=distm-(QradI(ion)+QradI(ion1))
if(dd.lt.0.0) then
iOverlp=1
write(*,'(a24,i3,a5,i3,a12,f5.2,a2)') &
'ERROR! Spheres of atoms ',ion,' and ',ion1, &
' overlap by ',abs(dd),' !'
else
iCheck=1
iOver=1
end if
50 end do
end do
if(iOverlp.eq.1) go to 46
!
!__________ Madelung potential along a line
!
else if(item.eq.8) then
if(iOver.eq.0 .or. iQuit.eq.1) then
write(*,*)'ERROR! You still have undefined parameters!'
go to 2
end if
call lineM(Q,filen,lenght,factor,gEwald,EPSx)
ijk=ijk+1
!
!__________ Madelung potential in a plane
!
else if(item.eq.9) then
if(iOver.eq.0 .or. iQuit.eq.1) then
write(*,*)'ERROR! You still have undefined parameters!'
go to 2
end if
call planeM(Q,filen,lenght,factor,gEwald,EPSx)
ijk=ijk+1
!
!__________ Quit or skip
!
else if(item.eq.10) then
go to 200
else
go to 100
end if
go to 2
100 write(*,*)'Incorrect item number! Try again!'
go to 2
!
!............. finish
200 deallocate(qCharge)
deallocate(Q)
deallocate(QradS)
end subroutine lev_coulmb
subroutine pointM(Q,factor,gEwald,EPSx)
!...................................................................
! Madelung potential at a single point
!...................................................................
use param
use menu
use atoms
implicit none
real*8 :: Q(NIONS),vMad,factor,gEwald,EPSx,pot
real*8, dimension(3) :: Pnt=(/0.0,0.0,0.0/),fPnt(3)
integer :: iCoord=0,iQuit,item,iCheck
!
1 iQuit=0
write(*,*)'..............MENU for Madelung (Point) .............'
write(*,*)'......... Change these parameters if necessary: .....'
write(*,*)
write(*,'(a)')' 0. Coordinates are specified in: '//angstr
if(iCoord.eq.0) then
iQuit=1
write(*,'(a)') ' 1. Point of interest: ....... undefined .......'
else
write(*,'(a38,f10.5,2(a1,f10.5),a1)') &
' 1. Point of interest (Angstroms): (', &
Pnt(1),',',Pnt(2),',',Pnt(3),')'
fPnt(1)=BCELL(1,1)*Pnt(1)+BCELL(1,2)*Pnt(2)+BCELL(1,3)*Pnt(3)
fPnt(2)=BCELL(2,1)*Pnt(1)+BCELL(2,2)*Pnt(2)+BCELL(2,3)*Pnt(3)
fPnt(3)=BCELL(3,1)*Pnt(1)+BCELL(3,2)*Pnt(2)+BCELL(3,3)*Pnt(3)
write(*,'(a38,f10.5,2(a1,f10.5),a1)') &
' Point of interest (fractional): (', &
fPnt(1),',',fPnt(2),',',fPnt(3),')'
end if
write(*,'(a)')' 2. Calculate the potential'
write(*,'(a)')' 3. Quit'
write(*,*)
write(*,*)'------> Choose the item and press ENTER:'
read(*,*,err=100) item
!
!__________ choose the way how the coordinates are given
!
if(item.eq.0) then
if(angstr.eq.'<Fractional>') then
angstr='<Angstroms> '
else if(angstr.eq.'<Angstroms> ') then
angstr='<AtomNumber>'
else if(angstr.eq.'<AtomNumber>') then
angstr='<Fractional>'
end if
!
!__________ give the point
!
else if(item.eq.1) then
call givepoint(Pnt(1),Pnt(2),Pnt(3),angstr)
iCoord=1
!
!__________ calculate the potential
!
else if(item.eq.2) then
if(iQuit.eq.1) then
write(*,*)'ERROR! You still have undefined parameters!'
go to 1
end if
write(*,*)'Please, wait ...'
pot=vMad(Pnt,Q,gEwald,EPSx,iCheck)
write(*,'(a,e12.6)')'Madelung potential: ',pot*factor
!
!__________ Quit
!
else if(item.eq.3) then
return
else
go to 100
end if
go to 1
100 write(*,*)'ERROR! Try again!'
go to 1
end subroutine pointM
subroutine lineM(Q,filen,lenght,factor,gEwald,EPSx)
!....................................................................
! Line Calculation of the Madelung potential
! 31 - unit number for the file filen(1:lenght) with output data.
! iQuit = 0 - all parameters are properly defined; can plot
! 1 - there are undefined parameters; cannot plot
!....................................................................
! Note: the potential of the atom within its radius is calculated
! properly so that there is no discontinuity neither in the potential
! nor in its derivative at the sphere surface.
!....................................................................
use param
use menu
use atoms
implicit none
real*8 :: R(3),Q(NIONS),tiny=0.00001,dzero=0.0,vMad,factor,gEwald,EPSx
real*8 :: fCENTX,fCENTY,fCENTZ,xcoord,a,absden,bCENTX,bCENTY,bCENTZ
character filen*12,Title*50,title_pl*7
integer lenght,iQuit,item,k2,iCheck
data Title/' '/
data title_pl/' '/
logical Yes_Do
!......................................................................
!....................... LINE MENU ....................................
!......................................................................
!_____ choose the vector along the line and normalize it;
! give starting point; give length.
!......................................................................
Yes_Do=.false.
1 iQuit=0
write(*,*)'.............. LINE MENU .......................'
write(*,*)'...... Change these parameters if necessary:....'
write(*,*)
write(*,'(a)')' 0. Coordinates are specified in: '//angstr
write(*,'(a35,f10.5,2(a1,f10.5),a1)') &
' 1. Starting point (Angstroms): (', &
aCENTX,',',aCENTY,',',aCENTZ,')'
fCENTX=BCELL(1,1)*aCENTX+BCELL(1,2)*aCENTY+BCELL(1,3)*aCENTZ
fCENTY=BCELL(2,1)*aCENTX+BCELL(2,2)*aCENTY+BCELL(2,3)*aCENTZ
fCENTZ=BCELL(3,1)*aCENTX+BCELL(3,2)*aCENTY+BCELL(3,3)*aCENTZ
write(*,'(a36,f10.5,2(a1,f10.5),a1)') &
' Starting point (fractional): (', &
fCENTX,',',fCENTY,',',fCENTZ,')'
a=vers0x*vers0x + vers0y*vers0y + vers0z*vers0z
if(a.eq.dzero) then
iQuit=1
write(*,'(a)') ' 2. Vector along the line: ....... undefined .......'
else
write(*,'(a30,f10.5,2(a1,f10.5),a1)') &
' 2. Vector along the line: (',vers0x,',',vers0y,',',vers0z,')'
end if
write(*,'(a44,f10.5)') ' 3. Lenght along the line (in Angstroms): ',width1
write(*,'(a)')' 4. Parameters for the plotting'
if(Yes_Do) then
write(*,'(a)') ' 5. Perform calculation of the potential: file '//filen &
//' <= DONE!'
else
write(*,'(a)') ' 5. Perform calculation of the potential: file '//filen
end if
write(*,'(a)')' 6. Preview the potential'
write(*,'(a)')' 7. Create a postscript file '// &
filen(:lenght)//'.ps for the plot'
write(*,'(a)')' 8. Return to the previous menu'
write(*,*)
write(*,*)'------> Choose the item and press ENTER:'
read(*,*,err=100) item
!
!__________ choose a way how the coordinates are given
!
if(item.eq.0) then
if(angstr.eq.'<Fractional>') then
angstr='<Angstroms> '
else if(angstr.eq.'<Angstroms> ') then
angstr='<AtomNumber>'
else if(angstr.eq.'<AtomNumber>') then
angstr='<Fractional>'
end if
!
!__________ give starting point for the line
!
else if(item.eq.1) then
if(angstr.eq.'<AtomNumber>') &
write(*,*)'Specify the 1st atom to be started from.'
call givepoint(aCENTX,aCENTY,aCENTZ,angstr)
Yes_Do=.false.
!
!__________ give a vector along the line
!
else if(item.eq.2) then
if(angstr.eq.'<AtomNumber>') then
write(*,*)'Specify the 2nd atom to be connected with.'
call givepoint(bCENTX,bCENTY,bCENTZ,angstr)
vers0x=bCENTX-aCENTX
vers0y=bCENTY-aCENTY
vers0z=bCENTZ-aCENTZ
WIDTH1=sqrt( vers0x**2+vers0y**2+vers0z**2 )
else
7 write(*,*)'Give a vector (x,y,z) along your line:'
read (*,*,err=7) vers0x, vers0y, vers0z
end if
call normalize(vers0x,vers0y,vers0z)
Yes_Do=.false.
!
!__________ give length along the line
!
else if(item.eq.3) then
10 write(*,*) 'Enter length (in Angstroms):'
read(*,*,err=10) width1
if(width1.lt.dzero) go to 10
Yes_Do=.false.
!
!__________ give the resolution in either direction, chop values
! and a multiplication factor for the potential, etc.
!
else if(item.eq.4) then
multcon=factor
call choose1()
Yes_Do=.false.
!
!__________ perform calculation of the potential along the line;
!
else if(item.eq.5) then
if(iQuit.ne.0) then
write(*,*)'ERROR! You still have undefined parameters!'
go to 1
end if
write(*,*)'Please, wait ...'
open(31,file=filen(:lenght),status='unknown',form='formatted')
write(*,*)'The file '//filen//' has been opened ...'
write (*,*)'Writing to the file '//filen(1:lenght)//' ...'
do K2=0,NRESOL
R(1)=acentx+k2*vers0x*width1/nresol
R(2)=acenty+k2*vers0y*width1/nresol
R(3)=acentz+k2*vers0z*width1/nresol
call reducn(R,DIRC,BCELL)
absden=vMad(R,Q,gEwald,EPSx,iCheck)
xcoord=k2*width1/nresol
if(lochop.ne.hichop) then
if(absden.gt.hichop) then
absden=hichop
else if(absden.lt.lochop) then
absden=lochop
end if
end if
write(31,*) xcoord,absden*multcon
end do
close (31)
write(*,*)'.... File '//filen(1:lenght)//' has been created! ....'
Yes_Do=.true.
!
!__________ preview the file just created
!
else if(item.eq.6) then
if(Yes_Do) then
call Plot1(filen,lenght,Title,title_pl, &
'Coordinate (A) ', &
'Coulomb potential ', 'Screen', 33,0, &
'N',.false.,dzero,dzero)
else
write(*,*) 'IGNORED! You have to accomplish the item 5 first!'
end if
!
!__________ create a PostScript file of the plot
!
else if(item.eq.7) then
if(Yes_Do) then
write(*,*)'Give the title:'
read(*,'(a)') Title
call Plot1(filen,lenght,Title,title_pl, &
'Coordinate (A) ', &
'Coulomb potential ', 'Postsc', 33,0, &
'N',.false.,dzero,dzero)
else
write(*,*) 'IGNORED! You have to accomplish the item 5 first!'
end if
!
else if(item.eq.8) then
return
else
go to 100
end if
go to 1
100 write(*,*)'ERROR! Try again!'
go to 1
end subroutine lineM
subroutine planeM(Q,filen,lenght,factor,gEwald,EPSx)
!....................................................................
! Plane Calculation of the Madelung potential.
! nfile - unit number for the file filen(1:lenght) with output data.
! iQuit = 0 - all parameters are properly defined; can plot
! 1 - there are undefined parameters; cannot plot
!....................................................................
! Note: the potential of the atom within its radius is calculated
! properly so that there is no discontinuity neither in the potential
! nor in its derivative at the sphere surface.
!....................................................................
use param
use menu
use atoms
implicit none
real*8 pA(2),pB(2),pC(2),R(3),Q(NIONS),vMad,factor,gEwald,EPSx,absden
integer lenght,iQuit,item,k3,k2,lenght3,iCheck
character filen*12, Title*50
data Title/' '/
real*8 :: tiny=0.00001,dzero=0.0,a,fCENTX,fCENTY,fCENTZ,xcoord,ycoord
logical Yes_Do
!......................................................................
!....................... PLANE MENU ...................................
!......................................................................
!_____ choose the vector along the plane normal and normalize it;
! other two vectors lying in the plane are then generated
! (rather arbitrarily though);
! give center point of the plane; give widths.
!......................................................................
Yes_Do=.false.
1 iQuit=0
write(*,*)'..............MENU for PLANE .......................'
write(*,*)'........ Change these parameters if necessary:......'
write(*,*)
write(*,'(a)')' 0. Coordinates are specified in: '//angstr
a=vers1x*vers1x + vers1y*vers1y + vers1z*vers1z
if(a.lt.tiny) then
iQuit=1
write(*,'(a)') ' / 1. Normal vector to the plane: ....... undefined .......'
write(*,'(a)') ' | X1 vector in the plane: ....... undefined .......'
write(*,'(a)') ' | Y1 vector in the plane: ....... undefined .......'
else
write(*,'(a35,f10.5,2(a1,f10.5),a1)') &
' / 1. Normal vector to the plane: (', &
vers1x,',',vers1y,',',vers1z,')'
write(*,'(a31,f10.5,2(a1,f10.5),a1)') &
' | X1 vector in the plane: (', &
vers2x,',',vers2y,',',vers2z,')'
write(*,'(a31,f10.5,2(a1,f10.5),a1)') &
' | Y1 vector in the plane: (', &
vers3x,',',vers3y,',',vers3z,')'
end if
if(icase.eq.1) then
write(*,'(a)') ' \\ 2. The plane has been specified by 3 points: NO'
else if(icase.eq.2) then
write(*,'(a)') ' \\ 2. The plane has been specified by 3 points: YES'
end if
if(icase.eq.2.and.icase1.eq.1) then
write(*,'(a)') ' 3. Central point => the center of the triangle: NO'
else if(icase.eq.2.and.icase1.eq.2) then
write(*,'(a)') ' 3. Central point => the center of the triangle: YES'
aCENTX=(Ra(1)+Rb(1)+Rc(1))/3.
aCENTY=(Ra(2)+Rb(2)+Rc(2))/3.
aCENTZ=(Ra(3)+Rb(3)+Rc(3))/3.
central_p=.true.
end if
if(central_p) then
if(icase.eq.2.and.icase1.eq.2) then
write(*,'(a)') ' Central point on the plane: '
else
write(*,'(a)') ' 4. Central point on the plane: '
end if
write(*,'(a29,f10.5,2(a1,f10.5),a1)') &
' in Angstroms => (',aCENTX,',',aCENTY,',',aCENTZ,')'
fCENTX=BCELL(1,1)*aCENTX+BCELL(1,2)*aCENTY+BCELL(1,3)*aCENTZ
fCENTY=BCELL(2,1)*aCENTX+BCELL(2,2)*aCENTY+BCELL(2,3)*aCENTZ
fCENTZ=BCELL(3,1)*aCENTX+BCELL(3,2)*aCENTY+BCELL(3,3)*aCENTZ
write(*,'(a29,f10.5,2(a1,f10.5),a1)')' in fractional => (', &
fCENTX,',',fCENTY,',',fCENTZ,')'
if(icase.eq.2) then
write(*,'(11x,(a))') 'The reference points A,B,C in (X1,Y1) are given as:'
pA(1)=vers2x*(Ra(1)-aCENTX)+vers2y*(Ra(2)-aCENTY)+ &
vers2z*(Ra(3)-aCENTZ)
pB(1)=vers2x*(Rb(1)-aCENTX)+vers2y*(Rb(2)-aCENTY)+ &
vers2z*(Rb(3)-aCENTZ)
pC(1)=vers2x*(Rc(1)-aCENTX)+vers2y*(Rc(2)-aCENTY)+ &
vers2z*(Rc(3)-aCENTZ)
pA(2)=vers3x*(Ra(1)-aCENTX)+vers3y*(Ra(2)-aCENTY)+ &
vers3z*(Ra(3)-aCENTZ)
pB(2)=vers3x*(Rb(1)-aCENTX)+vers3y*(Rb(2)-aCENTY)+ &
vers3z*(Rb(3)-aCENTZ)
pC(2)=vers3x*(Rc(1)-aCENTX)+vers3y*(Rc(2)-aCENTY)+ &
vers3z*(Rc(3)-aCENTZ)
write(*,13) 'A = (',pA(1),',',pA(2),')'
write(*,13) 'B = (',pB(1),',',pB(2),')'
write(*,13) 'C = (',pC(1),',',pC(2),')'
13 format(15x,a5,f10.5,a1,f10.5,a1)
end if
else
write(*,'(a)') ' 4. Central point on the plane: ....... undefined .......'
end if
write(*,'(a39,f10.5)') ' 5. Width along X1 axis (Angstroms): ',width1
write(*,'(a39,f10.5)') ' 6. Width along Y1 axis (Angstroms): ',width2
write(*,'(a)')' 7. Parameters for the plotting'
write(*,'(a)')' 8. Preview the potential'
if(Yes_Do) then
write(*,'(a)')' 9. Perform calculation for the potential: file '//filen &
//' <= DONE!'
else
write(*,'(a)') ' 9. Perform calculation for the potential: file '//filen
end if
write(*,'(a)')' 10. Return to the previous menu'
write(*,*)
write(*,*)'------> Choose the item and press ENTER:'
read(*,*,err=100) item
!
!__________ choose the way how the coordinates are given
!
if(item.eq.0) then
if(angstr.eq.'<Fractional>') then
angstr='<Angstroms> '
else if(angstr.eq.'<Angstroms> ') then
angstr='<AtomNumber>'
else if(angstr.eq.'<AtomNumber>') then
angstr='<Fractional>'
end if
!
!__________ give a normal vector to the plane and generate two
! others in the plane
!
else if(item.eq.1) then
icase=1
call vector3(DIRC)
Yes_Do=.false.
!
!__________ specify the plane by 3 points
!
else if(item.eq.2) then
icase=2
if(NIONS.le.2 .and. angstr.eq.'<AtomNumber>' ) then
write(*,*)'ERROR! Not enough atoms for this option!'
write(*,*)'Change to <Fractional> or <Angstroms> using 0'
write(*,*)'Hit ENTER when ready ...'
read(*,*)
else
call vector3(DIRC)
end if
Yes_Do=.false.
!
!__________ give a method to choose the central point on the plane
! in the case of 3 points (icase=2)
!
else if(item.eq.3) then
if(icase.eq.2.and.icase1.eq.1) then
icase1=2
aCENTX=(Ra(1)+Rb(1)+Rc(1))/3.
aCENTY=(Ra(2)+Rb(2)+Rc(2))/3.
aCENTZ=(Ra(3)+Rb(3)+Rc(3))/3.
central_p=.true.
Yes_Do=.false.
else if(icase.eq.2.and.icase1.eq.2) then
icase1=1
end if
!
!__________ give central point on the plane in a general way
!
else if(item.eq.4) then
if(iQuit.eq.1) then
write(*,*)'ERROR! You must acomplish the item 1 first!'
else
call centralP(DIRC)
central_p=.true.
Yes_Do=.false.
end if
!
!__________ give length along the X1,Y1 axes
!
else if(item.eq.5) then
10 write(*,*) 'Enter length along X1 axis (in Angstroms):'
read(*,*,err=10) width1
if(width1.lt.dzero) go to 10
Yes_Do=.false.
else if(item.eq.6) then
11 write(*,*) 'Enter length along Y1 axis (in Angstroms):'
read(*,*,err=11) width2
if(width2.lt.dzero) go to 11
Yes_Do=.false.
!
!__________ give the resolution in either direction, chop values
! and a multiplication factor for the density, etc.
!
else if(item.eq.7) then
multcon=factor
call choose3()
Yes_Do=.false.
!
!__________ preview
!
else if(item.eq.8) then
if(iQuit.eq.0.and.central_p) then
open(32,file='test.dat',status='unknown',form='formatted')
write(*,*)'The file test.dat has been opened to preview.'
write(*,*)'Working on previewing. Please, wait ...'
DO K3=-NRESOL_PRV/2,NRESOL_PRV/2
DO K2=-NRESOL_PRV/2,NRESOL_PRV/2
R(1)=acentx+(k2*vers2x*width1 + &
k3*vers3x*width2)/nresol_prv
R(2)=acenty+(k2*vers2y*width1 + &
k3*vers3y*width2)/nresol_prv
R(3)=acentz+(k2*vers2z*width1 + &
k3*vers3z*width2)/nresol_prv
call reducn(R,DIRC,BCELL)
absden=vMad(R,Q,gEwald,EPSx,iCheck)
xcoord=k2*width1/nresol_prv
ycoord=k3*width2/nresol_prv
if(lochop.ne.hichop) then
if(absden.gt.hichop) then
absden=hichop
else if(absden.lt.lochop) then
absden=lochop
end if
end if
write(32,*) xcoord,ycoord,absden*multcon
END DO
write(32,*)
END DO
close(32)
!______ plot the density: previewing
lenght3=8
call Plot3d('test.dat',lenght3,Title, &
'X-coordinate (A) ','Y-coordinate (A) ', &
'Coulomb potential ', 'Screen', 33, &
nclasses,type_prv)
else
write(*,*)'ERROR! You still have undefined parameters!'
end if
!
!__________ real calculation
!
else if(item.eq.9) then
if(iQuit.eq.0.and.central_p) then
open(31,file=filen(:lenght),status='unknown',form='formatted')
write(*,*)'The file '//filen//' has been opened for the PLOT.'
write(*,*)'Working on the real plot: writing to '// &
filen(1:lenght)//' ...'
DO K2=-NRESOL/2,NRESOL/2
DO K3=-NRESOL/2,NRESOL/2
R(1)=acentx+(k2*vers2x*width1+k3*vers3x*width2)/nresol
R(2)=acenty+(k2*vers2y*width1+k3*vers3y*width2)/nresol
R(3)=acentz+(k2*vers2z*width1+k3*vers3z*width2)/nresol
call reducn(R,DIRC,BCELL)
absden=vMad(R,Q,gEwald,EPSx,iCheck)
xcoord=k2*width1/nresol
ycoord=k3*width2/nresol
if(lochop.ne.hichop) then
if(absden.gt.hichop) then
absden=hichop
else if(absden.lt.lochop) then
absden=lochop
end if
end if
write(31,*) xcoord,ycoord,absden*multcon
END DO
END DO
close(31)
write(*,*) '.... File '//filen(1:lenght)//' has been created! ....'
Yes_Do=.true.
else
write(*,*)'ERROR! You still have undefined parameters!'
end if
!
!__________ quit option
!
else if(item.eq.10) then
return
else
go to 100
end if
go to 1
100 write(*,*)'ERROR! Try again!'
go to 1
end subroutine planeM
real*8 function vMad(Pnt,Q,gEwald,EPSx,iCheck)
!.....................................................................
! vMad - Madelung potential at the point Pnt from the whole lattice
! of charges Q(ion).
! iCheck=0 - atomic radii are ignored, i.e. atoms are meant to be
! point charges; the potential near any atom is therefore
! very large; however, exactly at the atomic site it is
! defined properly;
! iCheck=1 - atomic radii play their role: if Pnt happens to be inside
! any atomic sphere (spheres are not allowed to overlap!),
! then the atomic charge is assumed to be uniformly spread
! over the sphere, so that the potential inside the sphere
! produced by this atom is well defined and is calculated
! properly (i.e. from the inside and the outside parts).
! With this definition, the potential exactly at the lattice
! site is NOT the same as the convential Ewald method gives!
!.....................................................................
use param
use atoms
implicit none
real*8 :: Q(NIONS),Pnt(3),a(3),dzero=0.0,EPSx,gEwald,Ew
integer ion,iCheck
do ion=1,NIONS
a(1)=TI(1,ion)-Pnt(1)
a(2)=TI(2,ion)-Pnt(2)
a(3)=TI(3,ion)-Pnt(3)
call Madelung(a,gEwald,EPSx,Ew,iCheck,ion)
vMad=vMad+Q(ion)*Ew
end do
!________ convert to eV (this is the case, however, if factor=1)
! vMad=vMad*51.42322361
!________ convert to Volts (this is the case, however, if factor=1)
! (as in CETEP, see ewaltr.f)
vMad=vMad*14.39976868
end function vMad
subroutine Madelung(X,gEwald,EPSx,Ew,iCheck,ion)
!.......................................................................
! The Coulomb potential (Ew) at the point X from point-ion lattice.
! The Ewald's method is used here.
! Besides, the Evien's idea of organizing the summations over the
! direct and the reciprocal lattices ("by shells") is implemented.
!.......................................................................
! EPSx - the precision of the lattice Ewald's summation for x2:
! EPSx=-ln(EPSew)
!.......................................................................
use param
use atoms
implicit none
real*8 X(3),Xc(3),Y(3),gEwald,EPSx,Ew,gE2,Em0D,Em0I,Em
integer iCheck,ion,N,iDir,iInv,N1,N2,N3
logical FlagD,FlagI,Singul
real*8 :: pi=3.141592654,tiny=0.00001,dzero=0.0,urfc9
real*8 y2,y1,x2,dist,x1,g2,qu,Xg,cosXg
gE2=gEwald*gEwald
Singul=.false.
!.......... put summands and Em to zero:
Em0D=dzero
Em0I=dzero
Em=dzero
!
!....... The both lattices are built by shells numbered using the.......
! index N=0,1,2,... where N=0 belongs to the 0 site; inside every
! shell the lattice vectors are computed as N1*a1+N2*a2+N3*a3,
! where a1,a2,a3 are basic translations (AI for the direct and BI for
! the invers lattices, respectively), and N1,N2,N3 - indices for the
! shell, at least one of them is +N or -N.
!.......................................................................
!
!....... The contributions from all shells N. Construction of the shells
! N by means of the Evien's method.
FlagD=.True.
FlagI=.True.
!....... FlagD and FlagI are logical variables for interrupting of the
! summations over the direct and inverse lattices, respectively. At the
! beginning they are .true. and the summations are allowed. But, if for
! every term in the shell the corresponding contribution is small
! enough, then the variable becomes .false. and suppresses the corresp.
! summation for all sequential shells. If both are .false., the both
! summations are stopped. The property is obtained by checking the
! variables iDir and iInv for 0 values at the end of every shell.
! iDir and iInv are the numbers of sites in the shell which give a
! nonzero contribution).
!
N=-1
30 N=N+1
iDir=0
iInv=0
do N3=-N,N
do N2=-N,N
do 250 N1=-N,N
if(N3.ne.N.and.N3.ne.-N) then
if(N2.ne.N.and.N2.ne.-N) then
if(N1.ne.N.and.N1.ne.-N) go to 250
end if
end if
!
!____________ summation over the direct lattice; if iCheck=1 and the
! distance to the atom y2 < QradI, then the atom 'ion' is first of all
! removed here; then, at the end of the routine, it is added back but
! with a proper contribution.
if( .not.FlagD ) go to 100
Y(1)=N1*DIRC(1,1)+N2*DIRC(2,1)+N3*DIRC(3,1)+X(1)
Y(2)=N1*DIRC(1,2)+N2*DIRC(2,2)+N3*DIRC(3,2)+X(2)
Y(3)=N1*DIRC(1,3)+N2*DIRC(2,3)+N3*DIRC(3,3)+X(3)
Xc(1)=gEwald*Y(1)
Xc(2)=gEwald*Y(2)
Xc(3)=gEwald*Y(3)
y2= Y(1)*Y(1) + Y(2)*Y(2) + Y(3)*Y(3)
y1=sqrt(y2)
x2= y2*gEwald*gEwald
if( x2.le.EPSx ) then
iDir=iDir + 1