forked from sdrangan/introml
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhw07_neural.tex
381 lines (328 loc) · 11.5 KB
/
hw07_neural.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
\documentclass[11pt]{article}
\usepackage{fullpage}
\usepackage{amsmath, amssymb, bm, cite, epsfig, psfrag}
\usepackage{graphicx}
\usepackage{float}
\usepackage{amsthm}
\usepackage{amsfonts}
\usepackage{listings}
\usepackage{cite}
\usepackage{hyperref}
\usepackage{tikz}
\usepackage{enumerate}
\usepackage{listings}
\usepackage{mathtools}
\lstloadlanguages{Python}
\usetikzlibrary{shapes,arrows}
%\usetikzlibrary{dsp,chains}
\DeclareFixedFont{\ttb}{T1}{txtt}{bx}{n}{9} % for bold
\DeclareFixedFont{\ttm}{T1}{txtt}{m}{n}{9} % for normal
% Defining colors
\usepackage{color}
\definecolor{deepblue}{rgb}{0,0,0.5}
\definecolor{deepred}{rgb}{0.6,0,0}
\definecolor{deepgreen}{rgb}{0,0.5,0}
\definecolor{backcolour}{rgb}{0.95,0.95,0.92}
%\restylefloat{figure}
%\theoremstyle{plain} \newtheorem{theorem}{Theorem}
%\theoremstyle{definition} \newtheorem{definition}{Definition}
\def\del{\partial}
\def\ds{\displaystyle}
\def\ts{\textstyle}
\def\beq{\begin{equation}}
\def\eeq{\end{equation}}
\def\beqa{\begin{eqnarray}}
\def\eeqa{\end{eqnarray}}
\def\beqan{\begin{eqnarray*}}
\def\eeqan{\end{eqnarray*}}
\def\nn{\nonumber}
\def\binomial{\mathop{\mathrm{binomial}}}
\def\half{{\ts\frac{1}{2}}}
\def\Half{{\frac{1}{2}}}
\def\N{{\mathbb{N}}}
\def\Z{{\mathbb{Z}}}
\def\Q{{\mathbb{Q}}}
\def\R{{\mathbb{R}}}
\def\C{{\mathbb{C}}}
\def\argmin{\mathop{\mathrm{arg\,min}}}
\def\argmax{\mathop{\mathrm{arg\,max}}}
%\def\span{\mathop{\mathrm{span}}}
\def\diag{\mathop{\mathrm{diag}}}
\def\x{\times}
\def\limn{\lim_{n \rightarrow \infty}}
\def\liminfn{\liminf_{n \rightarrow \infty}}
\def\limsupn{\limsup_{n \rightarrow \infty}}
\def\GV{Guo and Verd{\'u}}
\def\MID{\,|\,}
\def\MIDD{\,;\,}
\newtheorem{proposition}{Proposition}
\newtheorem{definition}{Definition}
\newtheorem{theorem}{Theorem}
\newtheorem{lemma}{Lemma}
\newtheorem{corollary}{Corollary}
\newtheorem{assumption}{Assumption}
\newtheorem{claim}{Claim}
\def\qed{\mbox{} \hfill $\Box$}
\setlength{\unitlength}{1mm}
\def\bhat{\widehat{b}}
\def\ehat{\widehat{e}}
\def\phat{\widehat{p}}
\def\qhat{\widehat{q}}
\def\rhat{\widehat{r}}
\def\shat{\widehat{s}}
\def\uhat{\widehat{u}}
\def\ubar{\overline{u}}
\def\vhat{\widehat{v}}
\def\xhat{\widehat{x}}
\def\xbar{\overline{x}}
\def\zhat{\widehat{z}}
\def\zbar{\overline{z}}
\def\la{\leftarrow}
\def\ra{\rightarrow}
\def\MSE{\mbox{\small \sffamily MSE}}
\def\SNR{\mbox{\small \sffamily SNR}}
\def\SINR{\mbox{\small \sffamily SINR}}
\def\arr{\rightarrow}
\def\Exp{\mathbb{E}}
\def\var{\mbox{var}}
\def\Tr{\mbox{Tr}}
\def\tm1{t\! - \! 1}
\def\tp1{t\! + \! 1}
\def\Tm1{T\! - \! 1}
\def\Tp1{T\! + \! 1}
\def\Xset{{\cal X}}
\newcommand{\one}{\mathbf{1}}
\newcommand{\abf}{\mathbf{a}}
\newcommand{\bbf}{\mathbf{b}}
\newcommand{\dbf}{\mathbf{d}}
\newcommand{\ebf}{\mathbf{e}}
\newcommand{\gbf}{\mathbf{g}}
\newcommand{\hbf}{\mathbf{h}}
\newcommand{\pbf}{\mathbf{p}}
\newcommand{\pbfhat}{\widehat{\mathbf{p}}}
\newcommand{\qbf}{\mathbf{q}}
\newcommand{\qbfhat}{\widehat{\mathbf{q}}}
\newcommand{\rbf}{\mathbf{r}}
\newcommand{\rbfhat}{\widehat{\mathbf{r}}}
\newcommand{\sbf}{\mathbf{s}}
\newcommand{\sbfhat}{\widehat{\mathbf{s}}}
\newcommand{\ubf}{\mathbf{u}}
\newcommand{\ubfhat}{\widehat{\mathbf{u}}}
\newcommand{\utildebf}{\tilde{\mathbf{u}}}
\newcommand{\vbf}{\mathbf{v}}
\newcommand{\vbfhat}{\widehat{\mathbf{v}}}
\newcommand{\wbf}{\mathbf{w}}
\newcommand{\wbfhat}{\widehat{\mathbf{w}}}
\newcommand{\xbf}{\mathbf{x}}
\newcommand{\xbfhat}{\widehat{\mathbf{x}}}
\newcommand{\xbfbar}{\overline{\mathbf{x}}}
\newcommand{\ybf}{\mathbf{y}}
\newcommand{\zbf}{\mathbf{z}}
\newcommand{\zbfbar}{\overline{\mathbf{z}}}
\newcommand{\zbfhat}{\widehat{\mathbf{z}}}
\newcommand{\Ahat}{\widehat{A}}
\newcommand{\Abf}{\mathbf{A}}
\newcommand{\Bbf}{\mathbf{B}}
\newcommand{\Cbf}{\mathbf{C}}
\newcommand{\Bbfhat}{\widehat{\mathbf{B}}}
\newcommand{\Dbf}{\mathbf{D}}
\newcommand{\Gbf}{\mathbf{G}}
\newcommand{\Hbf}{\mathbf{H}}
\newcommand{\Ibf}{\mathbf{I}}
\newcommand{\Kbf}{\mathbf{K}}
\newcommand{\Pbf}{\mathbf{P}}
\newcommand{\Phat}{\widehat{P}}
\newcommand{\Qbf}{\mathbf{Q}}
\newcommand{\Rbf}{\mathbf{R}}
\newcommand{\Rhat}{\widehat{R}}
\newcommand{\Sbf}{\mathbf{S}}
\newcommand{\Ubf}{\mathbf{U}}
\newcommand{\Vbf}{\mathbf{V}}
\newcommand{\Wbf}{\mathbf{W}}
\newcommand{\Xhat}{\widehat{X}}
\newcommand{\Xbf}{\mathbf{X}}
\newcommand{\Ybf}{\mathbf{Y}}
\newcommand{\Zbf}{\mathbf{Z}}
\newcommand{\Zhat}{\widehat{Z}}
\newcommand{\Zbfhat}{\widehat{\mathbf{Z}}}
\def\alphabf{{\boldsymbol \alpha}}
\def\betabf{{\boldsymbol \beta}}
\def\betabfhat{{\widehat{\bm{\beta}}}}
\def\epsilonbf{{\boldsymbol \epsilon}}
\def\mubf{{\boldsymbol \mu}}
\def\lambdabf{{\boldsymbol \lambda}}
\def\etabf{{\boldsymbol \eta}}
\def\xibf{{\boldsymbol \xi}}
\def\taubf{{\boldsymbol \tau}}
\def\sigmahat{{\widehat{\sigma}}}
\def\thetabf{{\bm{\theta}}}
\def\thetabfhat{{\widehat{\bm{\theta}}}}
\def\thetahat{{\widehat{\theta}}}
\def\mubar{\overline{\mu}}
\def\muavg{\mu}
\def\sigbf{\bm{\sigma}}
\def\etal{\emph{et al.}}
\def\Ggothic{\mathfrak{G}}
\def\Pset{{\mathcal P}}
\newcommand{\bigCond}[2]{\bigl({#1} \!\bigm\vert\! {#2} \bigr)}
\newcommand{\BigCond}[2]{\Bigl({#1} \!\Bigm\vert\! {#2} \Bigr)}
\newcommand{\tran}{^{\text{\sf T}}}
\newcommand{\herm}{^{\text{\sf H}}}
\newcommand{\bkt}[1]{{\langle #1 \rangle}}
\def\Norm{{\mathcal N}}
\newcommand{\vmult}{.}
\newcommand{\vdiv}{./}
\def\hid{\textsc{\tiny H}}
\def\out{\textsc{\tiny O}}
% Python style for highlighting
\newcommand\pythonstyle{\lstset{
language=Python,
backgroundcolor=\color{backcolour},
commentstyle=\color{deepgreen},
basicstyle=\ttm,
otherkeywords={self}, % Add keywords here
keywordstyle=\ttb\color{deepblue},
emph={MyClass,__init__}, % Custom highlighting
emphstyle=\ttb\color{deepred}, % Custom highlighting style
stringstyle=\color{deepgreen},
%frame=tb, % Any extra options here
showstringspaces=false %
}}
% Python environment
\lstnewenvironment{python}[1][]
{
\pythonstyle
\lstset{#1}
}
{}
% Python for external files
\newcommand\pythonexternal[2][]{{
\pythonstyle
\lstinputlisting[#1]{#2}}}
% Python for inline
\newcommand\pycode[1]{{\pythonstyle\lstinline!#1!}}
\begin{document}
\title{Introduction to Machine Learning\\
Homework 7: Neural Networks}
\author{Prof. Sundeep Rangan and Yao Wang}
\date{}
\maketitle
% Submit answers to only problems 1--3. But, make sure you know how to do all problems.
\begin{enumerate}
\item Consider a neural network
on a 3-dimensional input $\xbf=(x_1,x_2, x_3)$ with weights and biases:
\[
W^\hid = \left[ \begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1\\ \end{array} \right], \quad
b^\hid = \left[ \begin{array}{c} 0 \\ 0 \\ -1 \\ 1 \end{array} \right] \quad
W^\out = [1, 1, -1, -1], \quad b^\out = -1.5.
\]
Assume the network uses the
threshold activation function \eqref{eq:gact_ht}
\beq \label{eq:gact_ht}
g_{\rm act}(z) = \begin{cases}
1, & \mbox{if } z \geq 0 \\
0, & \mbox{if } z < 0.
\end{cases}
\eeq
and the
threshold output function \eqref{eq:gout_thresh}:
\beq \label{eq:gout_thresh}
\hat{y} = \begin{cases}
1 & z^\out \geq 0 \\
0 & z^\out < 0.
\end{cases}
\eeq
\begin{enumerate}[(a)]
\item Write the components of $\zbf^\hid$ and $\ubf^\hid$ as a function
of $(x_1,x_2, x_3)$. For each component $j$, indicate where in the $(x_1,x_2, x_3)$
hyperplane $u^\hid_j=1$.
\item Write $z^\out$ as a function of $(x_1,x_2, x_3)$. In what region is
$\hat{y}=1$? (You can describe in mathematical formulae).
\end{enumerate}
\item Consider a neural network used for regression with a scalar input $x$ and
scalar target $y$,
\begin{align*}
& z_{j}^\hid = W^\hid_{j}x + b^\hid_j, \quad
u_{j}^\hid = \max\{0, z^\hid_j\},
\quad j=1,\ldots,N_h \\
&
z^\out = \sum_{k=1}^{N_h} W^\out_{k}u^\hid_{k} + b^\out,
\quad
\hat{y} = g_{\rm out}(z^\out).
\end{align*}
The hidden weights and biases are:
\[
\Wbf^\hid = \left[ \begin{array}{c} -1 \\ 1 \\ 1 \end{array} \right], \quad
\bbf^\hid = \left[ \begin{array}{c} -1 \\ 1 \\ -2 \end{array} \right].
\]
\begin{enumerate}[(a)]
\item What is the number $N_h$ of hidden units? For each $j=1,\ldots,N_h$,
draw $u^\hid_j$ as a function of $x$ over some suitable range of values $x$.
You may draw them on one plot, or on
multiple plots.
\item Since the network is for regression, you may choose
the activation function $g_{\rm out}(z^\out)$ to be linear.
Given training data $(x_i,y_i)$, $i=1,\ldots,N$, formally define the loss function you would use
to train the network?
\item Using the output activation and loss function selected in part (b), set up the formulation to determine
output weights and bias, $\Wbf^\out$, $b^\out$,
for the training data below. You should be able to find a closed form solution. Write a few line of python code to solve the problem.
\begin{center}
\begin{tabular}{|c|c|c|c|c|c|} \hline
$x_i$ & -2 & -1 & 0 & 3 & 3.5\\ \hline
$y_i$ & 0 & 0 & 1 & 3 & 3 \\ \hline
\end{tabular}
\end{center}
\item
Based on your solution for the output weights and bias,
draw $\hat{y}$ vs.\ $x$ over some suitable range of values $x$. Write a few line of python code to do this.
\item Write a function \pycode{predict} to output $\hat{y}$ given a vector of inputs
\pycode{x}. Assume \pycode{x} is a vector representing a batch of samples and
\pycode{yhat} is a vector with the corresponding outputs. Use the activation function
you selected in part (b), but your function should take the weights and biases
for both layers as inputs. Clearly state any assumptions on the formats for
the weights and biases. Also, to receive full credit, you must not use any for loops.
\end{enumerate}
\pagebreak
\item \label{prob:cg_exp}
Consider a neural network that takes each input $\xbf$ and produces
a prediction $\hat{y}$ given
\begin{align} \label{eq:nnmax}
\begin{split}
z_j &= \sum_{k=1}^{N_i}W_{jk}x_k + b_j, \quad u_j = 1/(1+\exp(-z_j)),
\quad j = 1,\ldots,M,\\
\hat{y} &= \frac{ \sum_{j=1}^{M} a_j u_j}{ \sum_{j=1}^M u_j},
\end{split}
\end{align}
where $M$ is the number of hidden units and is fixed (i.e.\ not trainable).
To train the model, we get training data $(\xbf_i,y_i)$, $i=1,\ldots,N$.
\begin{enumerate}[(a)]
\item Rewrite the equations \eqref{eq:nnmax} for the
batch of inputs $\xbf_i$ from the training data. That is, correctly
add the indexing $i$, to the equations.
\item If we use a loss function,
\[
L = \sum_{i=1}^N (y_i - \hat{y}_i)^2,
\]
draw the computation graph describing the mapping from $\xbf_i$ and parameters
to $L$.
Indicate which nodes are trainable parameters.
\item Compute the gradient $\partial L/\partial \hat{y}_i$
for all $i$.
\item Suppose that, in backpropagation, we have computed $\partial L/\partial \hat{y}_i$
for all $i$, represented as $\partial L/\partial \hat{\bf y}$. Describe how to compute the components of the gradient
$\partial L/\partial \ubf$.
\item
Suppose that we have computed the gradient $\partial L/\partial \ubf$, describe how would you compute the gradient $\partial L/\partial \zbf$.
\item
Suppose that we have computed the gradient $\partial L/\partial \zbf$, describe how would you compute the gradient
$\partial L/\partial W_{jk}$ and $\partial L/\partial b_j$.
\item
Put all above together, describe how would you compute the gradient $\partial L/\partial W_{jk}$ and $\partial L/\partial b_j$.
\item Write a few lines of python code to implement the gradients $\partial L/\partial \ubf$ (as in part (d)), given the gradient $\partial L/\partial \hat{\bf y}$.
Indicate how you represent the gradients.
Full credit requires that you avoid for-loops.
\end{enumerate}
\end{enumerate}
\end{document}
c