-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path1
91 lines (64 loc) · 2.28 KB
/
1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
setwd('D:\\prrc\\TCGA\\GDC\\mutation\\lnc\\survival')
library(survival)
library(caret)
library(glmnet)
library(survminer)
library(tidyverse)
library(ggplot2)
rt=read.table("expTime.txt",header=T,sep="\t",check.names=F,row.names=1) #读取输入文件
rt$futime=rt$futime/365
rt<-rt[,-c(3:10)]
rt<-na.omit(rt)
sigGenes=c("futime","fustat")
for(i in colnames(rt[,3:ncol(rt)])){
case_when(rt[,i]<=unname(quantile(rt[,i],0.25))~ 'low',
rt[,i]>unname(quantile(rt[,i],0.25))&rt[,i]<unname(quantile(rt[,i],0.75))~'median',
rt[,i]>=unname(quantile(rt[,i],0.75))~'high')->rt[,i]
rt[,i]<-as.factor(rt[,i])
}
data=rt
dd<-list()
for(i in 3:ncol(data)){
k=colnames(data[i])
dd[[k]]<-subset(data,data[,k]=='low'|data[,k]=='high',select = c("futime","fustat",k))
dd[[k]][,3]<-as.factor(as.character(dd[[k]][,3]))
}
#
fit=list()
for(i in 1:length(dd)){
diff=survdiff(Surv(dd[[i]]$futime,dd[[i]]$fustat) ~ dd[[i]][,3],data =dd[[i]])
pValue=1-pchisq(diff$chisq,df=1)
if(pValue<0.05){
sigGenes=c(sigGenes,names(dd)[i])
print(i)
fit[[i]]=survfit(Surv(dd[[i]]$futime,dd[[i]]$fustat)~ as.factor(dd[[i]][,3]),data =dd[[i]])
ggsurvplot(fit[[i]])
}
}
#
splots <- list()
splots[[1]]<-ggsurvplot(fit,
xlab = "Time_years",
ylab="survival probability",##根据需要调整
pval = T,
conf.int= F,
risk.table = T,
legend.title = names(dd)[i],
#surv.median.line = "hv",# 中位生存
palette="lancet")
res<-arrange_ggsurvplots(splots, print = F,
ncol = 1, nrow = 1, risk.table.height = 0.25)
ggsave(paste(names(dd)[i],"All_surv.pdf",sep = "_"), res,width=7,height = 6)
setwd('D:\\prrc\\TCGA\\GDC\\mutation\\lnc\\survival')
library(DESeq2)
library(tidyverse)
rt=read.table("symbol.txt",header=T,sep="\t",check.names=F)
rt2<-rt[,!grepl("-11A-", colnames(rt))]
rt2<-rt2[,!grepl("-11B-", colnames(rt2))]
clus<-read.table('cluster.txt',sep = '\t')
colnames(rt2)<-substr(colnames(rt2),1,12)
clus$V1<-substr(clus$V1,1,12)
r3<-intersect(clus$V1,colnames(rt2))
clus1<-filter(clus,V1 %in% r3)
View(clus1)
rt3<-select(rt2,c(1,r3))