forked from dmlc/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexamples.py
69 lines (49 loc) · 2.61 KB
/
examples.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
from ged import graph_edit_distance
import dgl
import numpy as np
src1 = [0, 1, 2, 3, 4, 5];
dst1 = [1, 2, 3, 4, 5, 6];
src2 = [0, 1, 3, 4, 5];
dst2 = [1, 2, 4, 5, 6];
G1 = dgl.DGLGraph((src1, dst1))
G2 = dgl.DGLGraph((src2, dst2))
# Exact edit distance with astar search
distance, node_mapping, edge_mapping = graph_edit_distance(G1, G1, algorithm='astar')
print(distance) # 0.0
distance, node_mapping, edge_mapping = graph_edit_distance(G1, G2, algorithm='astar')
print(distance) # 1.0
# With user-input cost matrices
node_substitution_cost = np.empty((G1.number_of_nodes(), G2.number_of_nodes()));
G1_node_deletion_cost = np.empty(G1.number_of_nodes());
G2_node_insertion_cost = np.empty(G2.number_of_nodes());
edge_substitution_cost = np.empty((G1.number_of_edges(), G2.number_of_edges()));
G1_edge_deletion_cost = np.empty(G1.number_of_edges());
G2_edge_insertion_cost = np.empty(G2.number_of_edges());
# Node substitution cost of 0 when node-ids are same, else 1
node_substitution_cost.fill(1.0);
for i in range(G1.number_of_nodes()):
for j in range(G2.number_of_nodes()):
node_substitution_cost[i,j] = 0.0;
# Node insertion/deletion cost of 1
G1_node_deletion_cost.fill(1.0);
G2_node_insertion_cost.fill(1.0);
# Edge substitution cost of 0
edge_substitution_cost.fill(0.0);
# Edge insertion/deletion cost of 0.5
G1_edge_deletion_cost.fill(0.5);
G2_edge_insertion_cost.fill(0.5);
distance, node_mapping, edge_mapping = graph_edit_distance(G1, G2, \
node_substitution_cost, edge_substitution_cost, \
G1_node_deletion_cost, G2_node_insertion_cost, \
G1_edge_deletion_cost, G2_edge_insertion_cost, \
algorithm="astar")
print(distance) #0.5
# Approximate edit distance with beam search, it is more than or equal to the exact edit distance
distance, node_mapping, edge_mapping = graph_edit_distance(G1, G2, algorithm='beam', max_beam_size=2)
print(distance) # 3.0
# Approximate edit distance with bipartite heuristic, it is more than or equal to the exact edit distance
distance, node_mapping, edge_mapping = graph_edit_distance(G1, G2, algorithm='bipartite')
print(distance) # 9.0, can be different as multiple solutions possible for the intermediate LAP used in this approximation
# Approximate edit distance with hausdorff heuristic, it is less than or equal to the exact edit distance
distance, node_mapping, edge_mapping = graph_edit_distance(G1, G2, algorithm='hausdorff')
print(distance) # 0.0