forked from dmlc/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvaetrain_dgl.py
executable file
·156 lines (132 loc) · 5.51 KB
/
vaetrain_dgl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import torch
import torch.nn as nn
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler
from torch.utils.data import DataLoader
import math, random, sys
from optparse import OptionParser
from collections import deque
import rdkit
import tqdm
from jtnn import *
torch.multiprocessing.set_sharing_strategy('file_system')
def worker_init_fn(id_):
lg = rdkit.RDLogger.logger()
lg.setLevel(rdkit.RDLogger.CRITICAL)
worker_init_fn(None)
parser = OptionParser()
parser.add_option("-t", "--train", dest="train", default='train', help='Training file name')
parser.add_option("-v", "--vocab", dest="vocab", default='vocab', help='Vocab file name')
parser.add_option("-s", "--save_dir", dest="save_path")
parser.add_option("-m", "--model", dest="model_path", default=None)
parser.add_option("-b", "--batch", dest="batch_size", default=40)
parser.add_option("-w", "--hidden", dest="hidden_size", default=200)
parser.add_option("-l", "--latent", dest="latent_size", default=56)
parser.add_option("-d", "--depth", dest="depth", default=3)
parser.add_option("-z", "--beta", dest="beta", default=1.0)
parser.add_option("-q", "--lr", dest="lr", default=1e-3)
parser.add_option("-T", "--test", dest="test", action="store_true")
opts,args = parser.parse_args()
dataset = JTNNDataset(data=opts.train, vocab=opts.vocab, training=True)
vocab = dataset.vocab
batch_size = int(opts.batch_size)
hidden_size = int(opts.hidden_size)
latent_size = int(opts.latent_size)
depth = int(opts.depth)
beta = float(opts.beta)
lr = float(opts.lr)
model = DGLJTNNVAE(vocab, hidden_size, latent_size, depth)
if opts.model_path is not None:
model.load_state_dict(torch.load(opts.model_path))
else:
for param in model.parameters():
if param.dim() == 1:
nn.init.constant(param, 0)
else:
nn.init.xavier_normal(param)
model = cuda(model)
print("Model #Params: %dK" % (sum([x.nelement() for x in model.parameters()]) / 1000,))
optimizer = optim.Adam(model.parameters(), lr=lr)
scheduler = lr_scheduler.ExponentialLR(optimizer, 0.9)
scheduler.step()
MAX_EPOCH = 100
PRINT_ITER = 20
def train():
dataset.training = True
dataloader = DataLoader(
dataset,
batch_size=batch_size,
shuffle=True,
num_workers=4,
collate_fn=JTNNCollator(vocab, True),
drop_last=True,
worker_init_fn=worker_init_fn)
for epoch in range(MAX_EPOCH):
word_acc,topo_acc,assm_acc,steo_acc = 0,0,0,0
for it, batch in enumerate(tqdm.tqdm(dataloader)):
model.zero_grad()
try:
loss, kl_div, wacc, tacc, sacc, dacc = model(batch, beta)
except:
print([t.smiles for t in batch['mol_trees']])
raise
loss.backward()
optimizer.step()
word_acc += wacc
topo_acc += tacc
assm_acc += sacc
steo_acc += dacc
if (it + 1) % PRINT_ITER == 0:
word_acc = word_acc / PRINT_ITER * 100
topo_acc = topo_acc / PRINT_ITER * 100
assm_acc = assm_acc / PRINT_ITER * 100
steo_acc = steo_acc / PRINT_ITER * 100
print("KL: %.1f, Word: %.2f, Topo: %.2f, Assm: %.2f, Steo: %.2f, Loss: %.6f" % (
kl_div, word_acc, topo_acc, assm_acc, steo_acc, loss.item()))
word_acc,topo_acc,assm_acc,steo_acc = 0,0,0,0
sys.stdout.flush()
if (it + 1) % 1500 == 0: #Fast annealing
scheduler.step()
print("learning rate: %.6f" % scheduler.get_lr()[0])
torch.save(model.state_dict(),
opts.save_path + "/model.iter-%d-%d" % (epoch, it + 1))
scheduler.step()
print("learning rate: %.6f" % scheduler.get_lr()[0])
torch.save(model.state_dict(), opts.save_path + "/model.iter-" + str(epoch))
def test():
dataset.training = False
dataloader = DataLoader(
dataset,
batch_size=1,
shuffle=False,
num_workers=0,
collate_fn=JTNNCollator(vocab, False),
drop_last=True,
worker_init_fn=worker_init_fn)
# Just an example of molecule decoding; in reality you may want to sample
# tree and molecule vectors.
for it, batch in enumerate(dataloader):
gt_smiles = batch['mol_trees'][0].smiles
print(gt_smiles)
model.move_to_cuda(batch)
_, tree_vec, mol_vec = model.encode(batch)
tree_vec, mol_vec, _, _ = model.sample(tree_vec, mol_vec)
smiles = model.decode(tree_vec, mol_vec)
print(smiles)
if __name__ == '__main__':
if opts.test:
test()
else:
train()
print('# passes:', model.n_passes)
print('Total # nodes processed:', model.n_nodes_total)
print('Total # edges processed:', model.n_edges_total)
print('Total # tree nodes processed:', model.n_tree_nodes_total)
print('Graph decoder: # passes:', model.jtmpn.n_passes)
print('Graph decoder: Total # candidates processed:', model.jtmpn.n_samples_total)
print('Graph decoder: Total # nodes processed:', model.jtmpn.n_nodes_total)
print('Graph decoder: Total # edges processed:', model.jtmpn.n_edges_total)
print('Graph encoder: # passes:', model.mpn.n_passes)
print('Graph encoder: Total # candidates processed:', model.mpn.n_samples_total)
print('Graph encoder: Total # nodes processed:', model.mpn.n_nodes_total)
print('Graph encoder: Total # edges processed:', model.mpn.n_edges_total)