forked from dmlc/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
142 lines (124 loc) · 5.55 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import pickle
import argparse
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
import torchtext
import dgl
import tqdm
import layers
import sampler as sampler_module
import evaluation
class PinSAGEModel(nn.Module):
def __init__(self, full_graph, ntype, textsets, hidden_dims, n_layers):
super().__init__()
self.proj = layers.LinearProjector(full_graph, ntype, textsets, hidden_dims)
self.sage = layers.SAGENet(hidden_dims, n_layers)
self.scorer = layers.ItemToItemScorer(full_graph, ntype)
def forward(self, pos_graph, neg_graph, blocks):
h_item = self.get_repr(blocks)
pos_score = self.scorer(pos_graph, h_item)
neg_score = self.scorer(neg_graph, h_item)
return (neg_score - pos_score + 1).clamp(min=0)
def get_repr(self, blocks):
h_item = self.proj(blocks[0].srcdata)
h_item_dst = self.proj(blocks[-1].dstdata)
return h_item_dst + self.sage(blocks, h_item)
def train(dataset, args):
g = dataset['train-graph']
val_matrix = dataset['val-matrix'].tocsr()
test_matrix = dataset['test-matrix'].tocsr()
item_texts = dataset['item-texts']
user_ntype = dataset['user-type']
item_ntype = dataset['item-type']
user_to_item_etype = dataset['user-to-item-type']
timestamp = dataset['timestamp-edge-column']
device = torch.device(args.device)
# Assign user and movie IDs and use them as features (to learn an individual trainable
# embedding for each entity)
g.nodes[user_ntype].data['id'] = torch.arange(g.number_of_nodes(user_ntype))
g.nodes[item_ntype].data['id'] = torch.arange(g.number_of_nodes(item_ntype))
# Prepare torchtext dataset and vocabulary
fields = {}
examples = []
for key, texts in item_texts.items():
fields[key] = torchtext.data.Field(include_lengths=True, lower=True, batch_first=True)
for i in range(g.number_of_nodes(item_ntype)):
example = torchtext.data.Example.fromlist(
[item_texts[key][i] for key in item_texts.keys()],
[(key, fields[key]) for key in item_texts.keys()])
examples.append(example)
textset = torchtext.data.Dataset(examples, fields)
for key, field in fields.items():
field.build_vocab(getattr(textset, key))
#field.build_vocab(getattr(textset, key), vectors='fasttext.simple.300d')
# Sampler
batch_sampler = sampler_module.ItemToItemBatchSampler(
g, user_ntype, item_ntype, args.batch_size)
neighbor_sampler = sampler_module.NeighborSampler(
g, user_ntype, item_ntype, args.random_walk_length,
args.random_walk_restart_prob, args.num_random_walks, args.num_neighbors,
args.num_layers)
collator = sampler_module.PinSAGECollator(neighbor_sampler, g, item_ntype, textset)
dataloader = DataLoader(
batch_sampler,
collate_fn=collator.collate_train,
num_workers=args.num_workers)
dataloader_test = DataLoader(
torch.arange(g.number_of_nodes(item_ntype)),
batch_size=args.batch_size,
collate_fn=collator.collate_test,
num_workers=args.num_workers)
dataloader_it = iter(dataloader)
# Model
model = PinSAGEModel(g, item_ntype, textset, args.hidden_dims, args.num_layers).to(device)
# Optimizer
opt = torch.optim.Adam(model.parameters(), lr=args.lr)
# For each batch of head-tail-negative triplets...
for epoch_id in range(args.num_epochs):
model.train()
for batch_id in tqdm.trange(args.batches_per_epoch):
pos_graph, neg_graph, blocks = next(dataloader_it)
# Copy to GPU
for i in range(len(blocks)):
blocks[i] = blocks[i].to(device)
pos_graph = pos_graph.to(device)
neg_graph = neg_graph.to(device)
loss = model(pos_graph, neg_graph, blocks).mean()
opt.zero_grad()
loss.backward()
opt.step()
# Evaluate
model.eval()
with torch.no_grad():
item_batches = torch.arange(g.number_of_nodes(item_ntype)).split(args.batch_size)
h_item_batches = []
for blocks in dataloader_test:
for i in range(len(blocks)):
blocks[i] = blocks[i].to(device)
h_item_batches.append(model.get_repr(blocks))
h_item = torch.cat(h_item_batches, 0)
print(evaluation.evaluate_nn(dataset, h_item, args.k, args.batch_size))
if __name__ == '__main__':
# Arguments
parser = argparse.ArgumentParser()
parser.add_argument('dataset_path', type=str)
parser.add_argument('--random-walk-length', type=int, default=2)
parser.add_argument('--random-walk-restart-prob', type=float, default=0.5)
parser.add_argument('--num-random-walks', type=int, default=10)
parser.add_argument('--num-neighbors', type=int, default=3)
parser.add_argument('--num-layers', type=int, default=2)
parser.add_argument('--hidden-dims', type=int, default=16)
parser.add_argument('--batch-size', type=int, default=32)
parser.add_argument('--device', type=str, default='cpu') # can also be "cuda:0"
parser.add_argument('--num-epochs', type=int, default=1)
parser.add_argument('--batches-per-epoch', type=int, default=20000)
parser.add_argument('--num-workers', type=int, default=0)
parser.add_argument('--lr', type=float, default=3e-5)
parser.add_argument('-k', type=int, default=10)
args = parser.parse_args()
# Load dataset
with open(args.dataset_path, 'rb') as f:
dataset = pickle.load(f)
train(dataset, args)