forked from dmlc/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsgc_reddit.py
105 lines (92 loc) · 3.08 KB
/
sgc_reddit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
"""
This code was modified from the GCN implementation in DGL examples.
Simplifying Graph Convolutional Networks
Paper: https://arxiv.org/abs/1902.07153
Code: https://github.com/Tiiiger/SGC
SGC implementation in DGL.
"""
import argparse, time, math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import dgl.function as fn
from dgl import DGLGraph
from dgl.data import register_data_args, load_data
from dgl.nn.pytorch.conv import SGConv
def normalize(h):
return (h-h.mean(0))/h.std(0)
def evaluate(model, features, graph, labels, mask):
model.eval()
with torch.no_grad():
logits = model(graph, features)[mask] # only compute the evaluation set
labels = labels[mask]
_, indices = torch.max(logits, dim=1)
correct = torch.sum(indices == labels)
return correct.item() * 1.0 / len(labels)
def main(args):
# load and preprocess dataset
args.dataset = "reddit-self-loop"
data = load_data(args)
g = data.graph
if args.gpu < 0:
cuda = False
else:
cuda = True
g = g.int().to(args.gpu)
features = g.ndata['feat']
labels = g.ndata['label']
train_mask = g.ndata['train_mask']
val_mask = g.ndata['val_mask']
test_mask = g.ndata['test_mask']
in_feats = features.shape[1]
n_classes = data.num_labels
n_edges = data.graph.number_of_edges()
print("""----Data statistics------'
#Edges %d
#Classes %d
#Train samples %d
#Val samples %d
#Test samples %d""" %
(n_edges, n_classes,
g.ndata['train_mask'].int().sum().item(),
g.ndata['val_mask'].int().sum().item(),
g.ndata['test_mask'].int().sum().item()))
# graph preprocess and calculate normalization factor
n_edges = g.number_of_edges()
# normalization
degs = g.in_degrees().float()
norm = torch.pow(degs, -0.5)
norm[torch.isinf(norm)] = 0
g.ndata['norm'] = norm.unsqueeze(1)
# create SGC model
model = SGConv(in_feats, n_classes, k=2, cached=True, bias=True, norm=normalize)
if args.gpu >= 0:
model = model.cuda()
# use optimizer
optimizer = torch.optim.LBFGS(model.parameters())
# define loss closure
def closure():
optimizer.zero_grad()
output = model(g, features)[train_mask]
loss_train = F.cross_entropy(output, labels[train_mask])
loss_train.backward()
return loss_train
# initialize graph
for epoch in range(args.n_epochs):
model.train()
optimizer.step(closure)
acc = evaluate(model, features, g, labels, test_mask)
print("Test Accuracy {:.4f}".format(acc))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='SGC')
register_data_args(parser)
parser.add_argument("--gpu", type=int, default=-1,
help="gpu")
parser.add_argument("--bias", action='store_true', default=False,
help="flag to use bias")
parser.add_argument("--n-epochs", type=int, default=2,
help="number of training epochs")
args = parser.parse_args()
print(args)
main(args)