forked from llvm-class/project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtype_analysis.h
229 lines (182 loc) · 6.64 KB
/
type_analysis.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
#pragma once
#ifndef TYPE_ANALYSIS_H
#define TYPE_ANALYSIS_H
#include "llvm.h"
/** Abstract interpretation-based analysis of Rift programs. The analysis
operates over the LLVM IR and the data types that appear at that
level. This means all types exposed in the implementation are visible,
including raw doubles and going all the way to RVals. The definitions in
this file add up to an intra-procedural, flow sensitive analysis of Rift
functions. The abstract state consists of mapping from LLVM values
(which are registers and constants) to abstract types. There are also
some free floating abstract types that are not referenced by registers.
*/
namespace rift {
// forward decl..
class MachineState;
/** An abstract type, or AType, represents a portion of the heap of a Rift
program. Each AType has a kind -- this describes the type of value we
are dealine with a kind can be either one of B(ottom), T(op), D(ouble),
D(ouble)V(ector), R(val) and others. ATypes that rerpresent boxes also
have a payload, another AType, that they refer to.
*/
class AType {
public:
enum class Kind { B, D, DV, CV, F, R, T } kind;
AType * payload;
static AType * top;
/////// Constructors////////////////////////////
AType(Kind t, AType * payload) : kind(t), payload(payload) { }
AType(Kind t) : kind(t), payload(top) { }
AType(Kind t, Kind t2) : kind(t), payload(new AType(t2)) { }
AType(Kind t, Kind t2, Kind t3) : kind(t), payload(new AType(t2, t3)) { }
AType(AType const & other) = default;
//////////////////// Abstract Operations //////////////////
/** Returns a new AType that is the least upper bound of the this
and the argument.
*/
AType * merge(AType * a) {
if (a->isTop()) return new AType(Kind::T);
if (kind == Kind::B) return new AType(*a);
if (a->kind == Kind::B) return new AType(*this);
switch (kind) {
case Kind::D:
if (*a != Kind::D) return new AType(Kind::T);
else return new AType(Kind::D);
case Kind::CV:
if (*a != Kind::CV) return new AType(Kind::T);
else return new AType(Kind::CV);
case Kind::F:
if (*a != Kind::F) return new AType(Kind::T);
else return new AType(Kind::F);
case Kind::DV:
if (*a != Kind::DV) return new AType(Kind::T);
else return new AType(Kind::DV, payload->merge(a->payload));
case Kind::R:
if (*a != Kind::R) return new AType(Kind::T);
else return new AType(Kind::R, payload->merge(a->payload));
default: return new AType(Kind::T);
}
}
/** Is this the top element of the lattice. */
bool isTop() const {
return kind == Kind::T;
}
/** Is this a scalar value? */
bool isScalar() {
return kind == Kind::D or (!isTop() and payload->isScalar());
}
/** Is this a value that can be unboxed to a double? */
bool isDouble() {
return kind == Kind::D or kind == Kind::DV or (!isTop() and payload->isDouble());
}
/** Is this a string? */
bool isCharacter() {
return kind == Kind::CV or (!isTop() and payload->isCharacter());
}
//TODO: IS this correct ?? Payload?
bool operator == (AType::Kind other) const {
return kind == other;
}
//TODO: IS this correct ?? Payload?
bool operator != (AType::Kind other) const {
return kind != other;
}
bool canBeSameTypeAs(AType * other) {
if (kind != other->kind)
return false;
// they are the same kind, the only way then can be different is if their kind is R and their payload is of different kind, otherwise we cannot be sure
if (kind == Kind::R)
return payload->canBeSameTypeAs(other->payload);
return true;
}
/** Order on ATypes. This only implements the part of the relation
that can happen and that we care about. (Lazy and risky coding)
We are only interested in the R types as phi nodes are typed.
R(DV(D))< R(DV)<R<T, R(CV)<R<T, R(F)<R<T
*/
bool operator < (AType const & other) const {
if( isTop() ) return false;
if( other.isTop() ) return true;
if( kind == Kind::B) return other != Kind::B;
// This is a bit of a short cut, but it is fine for our use case
assert(kind == other.kind);
return *payload < *other.payload;
}
void print(std::ostream & s, MachineState & m);
static AType * createTop() {
auto t = new AType(Kind::T, nullptr);
t->payload = t;
return t;
}
};
class MachineState {
public:
AType * get(llvm::Value * v) {
if (type.count(v)) {
return type.at(v);
}
auto n = new AType(AType::Kind::B);
type[v] = n;
location[n] = v;
return n;
}
void clear() {
type.clear();
location.clear();
}
llvm::Value * getLocation(AType * t) {
if (!location.count(t))
return nullptr;
return location[t];
}
AType * initialize(llvm::Value * v, AType * t) {
assert(!getLocation(t));
type[v] = t;
location[t] = v;
return t;
}
void erase(llvm::Value * v) {
if (type.count(v))
location.erase(type.at(v));
type.erase(v);
}
AType * update(llvm::Value * v, AType * t) {
// assert(!(llvm::isa<llvm::Constant>(v) && t->payload != nullptr));
auto prev = get(v);
if (*prev < *t) {
type[v] = t;
location[t] = v;
changed = true;
return t;
}
return prev;
}
void iterationStart() {
changed = false;
}
bool hasReachedFixpoint() {
return !changed;
}
MachineState() : changed(false) {}
friend std::ostream & operator << (std::ostream & s, MachineState & m);
private:
bool changed;
std::map<llvm::Value*, AType*> type;
std::map<AType*, llvm::Value*> location;
};
/** Type and shape analysis. */
class TypeAnalysis : public llvm::FunctionPass {
public:
static char ID;
char const * getPassName() const override { return "TypeAnalysis"; }
TypeAnalysis() : llvm::FunctionPass(ID) {}
bool runOnFunction(llvm::Function & f) override;
MachineState state;
private:
void genericArithmetic(llvm::CallInst * ci);
void genericRelational(llvm::CallInst * ci);
void genericGetElement(llvm::CallInst * ci);
};
} // namespace rift
#endif // TYPE_ANALYSIS_H