-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathcreate_dataset.py
61 lines (49 loc) · 2.46 KB
/
create_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import argparse
from src.common.data import make_dataset
import src.common.constants as const
def get_parser():
parser = argparse.ArgumentParser(description='Create dataset containing input images and relevant ellipses using '
'SurRender.',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--n_train', type=int, default=20000,
help='Number of training images')
parser.add_argument('--n_val', type=int, default=2000,
help='Number of validation images')
parser.add_argument('--n_test', type=int, default=1000,
help='Number of testing images')
parser.add_argument('--identifier', type=str, default=None,
help='Number of testing images')
parser.add_argument('--resolution', type=tuple, default=const.CAMERA_RESOLUTION,
help='Camera resolution')
parser.add_argument('--fov', type=tuple, default=const.CAMERA_FOV,
help='Camera FoV')
parser.add_argument('--min_sol_incidence', type=float, default=const.MIN_SOL_INCIDENCE,
help='Minimum solar incidence angle')
parser.add_argument('--max_sol_incidence', type=float, default=const.MAX_SOL_INCIDENCE,
help='Maximum solar incidence angle')
parser.add_argument('--ellipse_limit', type=float, default=const.MAX_ELLIPTICITY,
help='Maximum ellipticity for gt ellipse shapes (selenographic)')
parser.add_argument('--filled', type=bool, default=const.FILLED,
help='Whether to fill the crater masks or not')
parser.add_argument('--mask_thickness', type=int, default=const.MASK_THICKNESS,
help='How thick to make the mask rim if not filled')
return parser
if __name__ == "__main__":
parser = get_parser()
args = parser.parse_args()
generation_kwargs = dict(
resolution=args.resolution,
fov=args.fov,
min_sol_incidence=args.min_sol_incidence,
max_sol_incidence=args.max_sol_incidence,
ellipse_limit=args.ellipse_limit,
filled=args.filled,
mask_thickness=args.mask_thickness
)
make_dataset(
n_training=args.n_train,
n_validation=args.n_val,
n_testing=args.n_test,
identifier=args.identifier,
generation_kwargs=generation_kwargs
)