-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathinsights.subscription.go
138 lines (120 loc) · 4.24 KB
/
insights.subscription.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
package metrics
import (
"strings"
"github.com/Azure/azure-sdk-for-go/sdk/resourcemanager/monitor/armmonitor"
"github.com/Azure/azure-sdk-for-go/sdk/resourcemanager/resources/armsubscriptions"
"github.com/prometheus/client_golang/prometheus"
"github.com/webdevops/go-common/azuresdk/armclient"
stringsCommon "github.com/webdevops/go-common/strings"
"github.com/webdevops/go-common/utils/to"
)
type (
AzureInsightSubscriptionMetricsResult struct {
AzureInsightBaseMetricsResult
subscription *armsubscriptions.Subscription
Result *armmonitor.MetricsClientListAtSubscriptionScopeResponse
}
)
func (r *AzureInsightSubscriptionMetricsResult) SendMetricToChannel(channel chan<- PrometheusMetricResult) {
if r.Result.Value != nil {
// DEBUGGING
// data, _ := json.Marshal(r.Result)
// fmt.Println(string(data))
for _, metric := range r.Result.Value {
if metric.Timeseries != nil {
for _, timeseries := range metric.Timeseries {
if timeseries.Data != nil {
// get dimension name (optional)
dimensions := map[string]string{}
resourceId := ""
if timeseries.Metadatavalues != nil {
for _, dimensionRow := range timeseries.Metadatavalues {
dimensionRowName := to.String(dimensionRow.Name.Value)
dimensionRowValue := to.String(dimensionRow.Value)
if r.prober.settings.DimensionLowercase {
dimensionRowValue = strings.ToLower(dimensionRowValue)
}
if strings.EqualFold(dimensionRowName, "microsoft.resourceid") {
resourceId = dimensionRowValue
} else {
dimensions[dimensionRowName] = dimensionRowValue
}
}
}
azureResource, _ := armclient.ParseResourceId(resourceId)
metricUnit := ""
if metric.Unit != nil {
metricUnit = string(*metric.Unit)
}
metricLabels := prometheus.Labels{
"resourceID": strings.ToLower(resourceId),
"subscriptionID": azureResource.Subscription,
"subscriptionName": to.String(r.subscription.DisplayName),
"resourceGroup": azureResource.ResourceGroup,
"resourceName": azureResource.ResourceName,
"metric": to.String(metric.Name.Value),
"unit": metricUnit,
"interval": to.String(r.prober.settings.Interval),
"timespan": r.prober.settings.Timespan,
"aggregation": "",
}
// add resource tags as labels
metricLabels = r.prober.AzureResourceTagManager.AddResourceTagsToPrometheusLabels(r.prober.ctx, metricLabels, resourceId)
if len(dimensions) == 1 {
// we have only one dimension
// add one dimension="foobar" label (backward compatibility)
for _, dimensionValue := range dimensions {
metricLabels["dimension"] = dimensionValue
}
} else if len(dimensions) >= 2 {
// we have multiple dimensions
// add each dimension as dimensionXzy="foobar" label
for dimensionName, dimensionValue := range dimensions {
labelName := "dimension" + stringsCommon.UppercaseFirst(dimensionName)
labelName = metricLabelNotAllowedChars.ReplaceAllString(labelName, "")
metricLabels[labelName] = dimensionValue
}
}
for _, timeseriesData := range timeseries.Data {
if timeseriesData.Total != nil {
metricLabels["aggregation"] = "total"
channel <- r.buildMetric(
metricLabels,
*timeseriesData.Total,
)
}
if timeseriesData.Minimum != nil {
metricLabels["aggregation"] = "minimum"
channel <- r.buildMetric(
metricLabels,
*timeseriesData.Minimum,
)
}
if timeseriesData.Maximum != nil {
metricLabels["aggregation"] = "maximum"
channel <- r.buildMetric(
metricLabels,
*timeseriesData.Maximum,
)
}
if timeseriesData.Average != nil {
metricLabels["aggregation"] = "average"
channel <- r.buildMetric(
metricLabels,
*timeseriesData.Average,
)
}
if timeseriesData.Count != nil {
metricLabels["aggregation"] = "count"
channel <- r.buildMetric(
metricLabels,
*timeseriesData.Count,
)
}
}
}
}
}
}
}
}