-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlatlon_wind_c48.py
92 lines (66 loc) · 2.33 KB
/
latlon_wind_c48.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import matplotlib.pyplot as plt
import netCDF4 as nc
import numpy as np
import cartopy.crs as ccrs
import cartopy.feature as cfeature
import os
#datadir = '/work2/noaa/da/cmartin/CI/GDASApp/data/lowres/gdas.20210323/12/atmos/RESTART/'
datadir = '/work/noaa/da/weiwli/GDASApp/build/fv3-jedi/test/Data/'
griddir = '/work/noaa/da/weiwli/c48/gfs_land_c48/grid'
# one tile for now
#tile=1
#fname = os.path.join(datadir, f"20210323.180000.fv_srf_wnd.res.tile{tile}.nc")
#oroname = os.path.join(griddir, f"C48_oro_data.tile{tile}.nc")
# read data and grid
#ncdf = nc.Dataset(fname)
#ncgf = nc.Dataset(oroname)
#lat = ncgf.variables['geolat'][:]
#lon = ncgf.variables['geolon'][:]
#lon[np.where(lon>180)] = lon[np.where(lon>180)]-360
#t2m = ncdf.variables['t2m'][0,:,:]
# set up map
#ax = plt.axes(projection=ccrs.PlateCarree())
# define grid
#gnomonic = ccrs.Gnomonic(central_latitude=lat[384,384], central_longitude=lon[384,384])
# plot data
#ax.pcolormesh(lon, lat, t127)
##ax.pcolormesh(lon, lat, t127, transform=gnomonic)
#ax.coastlines(zorder=10)
#ax.set_global()
#plt.show()
# loop and try all six tiles
lon3d=np.empty((6,25,48))
lat3d=np.empty((6,25,48))
u3d=np.empty((6,25,48))
v3d=np.empty((6,25,48))
for tile in range(1,1):
#fname = os.path.join(datadir, f"20210323.180000.fv_srf_wnd.res.tile{tile}.nc")
fname = os.path.join(datadir, f"gfs.bkg.lonlat.20201215_000000z.nc4")
oroname = os.path.join(griddir, f"C48_oro_data.tile{tile}.nc")
#read data and grid
ncdf = nc.Dataset(fname)
ncgf = nc.Dataset(oroname)
lat = ncgf.variables['geolat'][:]
lon = ncgf.variables['geolon'][:]
lon[np.where(lon>180)] = lon[np.where(lon>180)]-360
u = ncdf.variables['u_srf'][0,:,:]
v = ncdf.variables['v_srf'][0,:,:]
print(tile)
print(u)
#put these 2D arrays in the 3D arrays
lat3d[tile-1,...] = lat
lon3d[tile-1,...] = lon
u3d[tile-1,...] = u
v3d[tile-1,...] = v
#get min/max for plotting
#minval = np.nanmin(arr2d)
#maxval = np.nanmax(arr2d)
#set up map
ax = plt.axes(projection =ccrs.PlateCarree())
# loop and plot data
for itile in range(0,0):
print(itile)
ax.quiver(lon3d[itile], lat3d[itile], u3d[itile], v3d[itile], transform = ccrs.PlateCarree(), angles = "xy", color= "red", regrid_shape = 20)
ax.coastlines()
ax.set_title("Surface Wind Vector C48")
plt.show()