forked from Snowda/MPU9250
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMPU9250.cpp
3600 lines (3234 loc) · 133 KB
/
MPU9250.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/** Based on InvenSense MPU-9250 register map document rev. 1.4, 9/9/2013 (RM-MPU-9250A-00)
* 13/04/2014 by Conor Forde <[email protected]>
* Updates should be available at https://github.com/Snowda/MPU9250
*
* Changelog:
* ... - ongoing development release
* NOTE: THIS IS ONLY A PARIAL RELEASE.
* THIS DEVICE CLASS IS CURRENTLY UNDERGOING ACTIVE DEVELOPMENT AND IS MISSING MOST FEATURES.
* PLEASE KEEP THIS IN MIND IF YOU DECIDE TO USE THIS PARTICULAR CODE FOR ANYTHING.
*/
#include "stdint.h"
#include "MPU9250.h"
#include "Wire.h"
/** Default constructor, uses default I2C address.
* @see MPU9250_DEFAULT_ADDRESS
*/
MPU9250::MPU9250() {
_address = MPU9250_DEFAULT_ADDRESS;
_mag_address = MPU9250_MAG_ADDRESS;
}
bool MPU9250::writeRegister(const uint8_t register_addr, const uint8_t value) {
//send write call to sensor address
//send register address to sensor
//send value to register
bool write_status = 0;
Wire.beginTransmission(_address); //open communication with
Wire.write(register_addr);
Wire.write(value);
Wire.endTransmission();
return write_status; //returns whether the write succeeded or failed
}
bool MPU9250::writeMagRegister(const uint8_t register_addr, const uint8_t value) {
//send write call to sensor address
//send register address to sensor
//send value to register
bool write_status = 0;
Wire.beginTransmission(_mag_address); //open communication with
Wire.write(register_addr);
Wire.write(value);
Wire.endTransmission();
return write_status; //returns whether the write succeeded or failed
}
bool MPU9250::writeRegisters(const uint8_t msb_register, const uint8_t msb_value, const uint8_t lsb_register, const uint8_t lsb_value) {
//send write call to sensor address
//send register address to sensor
//send value to register
bool msb_bool, lsb_bool;
msb_bool = writeRegister(msb_register, msb_value);
lsb_bool = writeRegister(lsb_register, lsb_value);
return 0; //returns whether the write succeeded or failed
}
bool MPU9250::writeMaskedRegister(const uint8_t register_addr, const uint8_t mask, const uint8_t value) {
uint8_t masked_value = (mask & value);
uint8_t regvalue = readRegister(register_addr);
regvalue = regvalue & ~mask; // Zero Mask bits
regvalue = regvalue | masked_value; //Set Mask value
return writeRegister(register_addr, regvalue);
}
uint8_t MPU9250::readRegister(const uint8_t register_addr) {
//call sensor by address
//call registers
uint8_t data = 0;
Wire.beginTransmission(_address);
Wire.write(register_addr);
Wire.endTransmission();
Wire.requestFrom((int)_address, 1);
while(Wire.available()) {
data = Wire.read(); // receive a byte as character
}
return data; //return the data returned from the register
}
uint8_t MPU9250::readMagRegister(const uint8_t register_addr) {
//call sensor by address
//call registers
uint8_t data = 0;
Wire.beginTransmission(_mag_address);
Wire.write(register_addr);
Wire.endTransmission();
Wire.requestFrom((int)_address, 1);
while(Wire.available()) {
data = Wire.read(); // receive a byte as character
}
return data; //return the data returned from the register
}
uint16_t MPU9250::readRegisters(const uint8_t msb_register, const uint8_t lsb_register) {
uint8_t msb = readRegister(msb_register);
uint8_t lsb = readRegister(lsb_register);
return (((int16_t)msb) << 8) | lsb;
}
uint8_t MPU9250::readMaskedRegister(const uint8_t register_addr, const uint8_t mask) {
uint8_t data = readRegister(register_addr);
return (data & mask);
//every reference to this is wrong!!! fix them
}
/** Power on and prepare for general usage.
* This will activate the device and take it out of sleep mode (which must be done
* after start-up). This function also sets both the accelerometer and the gyroscope
* to their most sensitive settings, namely +/- 2g and +/- 250 degrees/sec, and sets
* the clock source to use the X Gyro for reference, which is slightly better than
* the default internal clock source.
*/
void MPU9250::initialize(void) {
Wire.begin();
setClockSource(0);
setFullScaleGyroRange(MPU9250_GYRO_FULL_SCALE_250DPS);
setFullScaleAccelRange(MPU9250_FULL_SCALE_8G);
setSleepEnabled(false);
}
// AUX_VDDIO register (InvenSense demo code calls this RA_*G_OFFS_TC)
/** Get the auxiliary I2C supply voltage level.
* When set to 1, the auxiliary I2C bus high logic level is VDD. When cleared to
* 0, the auxiliary I2C bus high logic level is VLOGIC. This does not apply to
* the MPU-6000, which does not have a VLOGIC pin.
* @return I2C supply voltage level (0=VLOGIC, 1=VDD)
*/
uint8_t MPU9250::getAuxVDDIOLevel(void) {
return 0;
//return readMaskedRegister(MPU9250_RA_YG_OFFS_TC, MPU9250_TC_PWR_MODE_BIT); //clarify/fix register values
}
/** Set the auxiliary I2C supply voltage level.
* When set to 1, the auxiliary I2C bus high logic level is VDD. When cleared to
* 0, the auxiliary I2C bus high logic level is VLOGIC. This does not apply to
* the MPU-6000, which does not have a VLOGIC pin.
* @param level I2C supply voltage level (0=VLOGIC, 1=VDD)
*/
bool MPU9250::setAuxVDDIOLevel(const uint8_t level) {
return 0;
//return writeMaskedRegister(MPU9250_RA_YG_OFFS_TC, MPU9250_TC_PWR_MODE_BIT, level); //clarify/fix register values
}
/** Get gyroscope output rate divider.
* The sensor register output, FIFO output, DMP sampling, Motion detection, Zero
* Motion detection, and Free Fall detection are all based on the Sample Rate.
* The Sample Rate is generated by dividing the gyroscope output rate by
* SMPLRT_DIV:
*
* Sample Rate = Gyroscope Output Rate / (1 + SMPLRT_DIV)
*
* where Gyroscope Output Rate = 8kHz when the DLPF is disabled (DLPF_CFG = 0 or
* 7), and 1kHz when the DLPF is enabled (see Register 26).
*
* Note: The accelerometer output rate is 1kHz. This means that for a Sample
* Rate greater than 1kHz, the same accelerometer sample may be output to the
* FIFO, DMP, and sensor registers more than once.
*
* For a diagram of the gyroscope and accelerometer signal paths, see Section 8
* of the MPU-6000/MPU-6050 Product Specification document.
*
* @return Current sample rate
* @see MPU9250_SMPLRT_DIV
*/
uint8_t MPU9250::getRate(void) {
return readRegister(MPU9250_SMPLRT_DIV);
}
/** Set gyroscope sample rate divider.
* @param rate New sample rate divider
* @see getRate()
* @see MPU9250_SMPLRT_DIV
*/
bool MPU9250::setRate(const uint8_t rate) {
return writeRegister(MPU9250_SMPLRT_DIV, rate);
}
// CONFIG register
/** Get external FSYNC configuration.
* Configures the external Frame Synchronization (FSYNC) pin sampling. An
* external signal connected to the FSYNC pin can be sampled by configuring
* EXT_SYNC_SET. Signal changes to the FSYNC pin are latched so that short
* strobes may be captured. The latched FSYNC signal will be sampled at the
* Sampling Rate, as defined in register 25. After sampling, the latch will
* reset to the current FSYNC signal state.
*
* The sampled value will be reported in place of the least significant bit in
* a sensor data register determined by the value of EXT_SYNC_SET according to
* the following table.
*
* <pre>
* EXT_SYNC_SET | FSYNC Bit Location
* -------------+-------------------
* 0 | Input disabled
* 1 | TEMP_OUT_L[0]
* 2 | GYRO_XOUT_L[0]
* 3 | GYRO_YOUT_L[0]
* 4 | GYRO_ZOUT_L[0]
* 5 | ACCEL_XOUT_L[0]
* 6 | ACCEL_YOUT_L[0]
* 7 | ACCEL_ZOUT_L[0]
* </pre>
*
* @return FSYNC configuration value
*/
uint8_t MPU9250::getExternalFrameSync(void) {
return readMaskedRegister(MPU9250_CONFIG, MPU9250_EXT_SYNC_SET_MASK);
}
/** Set external FSYNC configuration.
* @see getExternalFrameSync()
* @see MPU9250_CONFIG
* @param sync New FSYNC configuration value
*/
bool MPU9250::setExternalFrameSync(const uint8_t sync) {
return writeMaskedRegister(MPU9250_CONFIG, MPU9250_EXT_SYNC_SET_MASK, sync);
}
/** Get digital low-pass filter configuration.
* The DLPF_CFG parameter sets the digital low pass filter configuration. It
* also determines the internal sampling rate used by the device as shown in
* the table below.
*
* Note: The accelerometer output rate is 1kHz. This means that for a Sample
* Rate greater than 1kHz, the same accelerometer sample may be output to the
* FIFO, DMP, and sensor registers more than once.
*
* <pre>
* | ACCELEROMETER | GYROSCOPE
* DLPF_CFG | Bandwidth | Delay | Bandwidth | Delay | Sample Rate
* ---------+-----------+--------+-----------+--------+-------------
* 0 | 260Hz | 0ms | 256Hz | 0.98ms | 8kHz
* 1 | 184Hz | 2.0ms | 188Hz | 1.9ms | 1kHz
* 2 | 94Hz | 3.0ms | 98Hz | 2.8ms | 1kHz
* 3 | 44Hz | 4.9ms | 42Hz | 4.8ms | 1kHz
* 4 | 21Hz | 8.5ms | 20Hz | 8.3ms | 1kHz
* 5 | 10Hz | 13.8ms | 10Hz | 13.4ms | 1kHz
* 6 | 5Hz | 19.0ms | 5Hz | 18.6ms | 1kHz
* 7 | -- Reserved -- | -- Reserved -- | Reserved
* </pre>
*
* @return DLFP configuration
* @see MPU9250_CONFIG
* @see MPU9250_DLPF_CFG_MASK
*/
uint8_t MPU9250::getDLPFMode(void) {
return readMaskedRegister(MPU9250_CONFIG, MPU9250_DLPF_CFG_MASK); //MPU9250_CONFIG, MPU9250_CFG_DLPF_CFG_BIT, MPU9250_CFG_DLPF_CFG_LENGTH//clarify/fix register values
}
/** Set digital low-pass filter configuration.
* @param mode New DLFP configuration setting
* @see getDLPFBandwidth()
* @see MPU9250_DLPF_BW_256
* @see MPU9250_CONFIG
* @see MPU9250_DLPF_CFG_MASK
*/
bool MPU9250::setDLPFMode(const uint8_t mode) {
if(mode > 7) {
return 0;
}
return writeMaskedRegister(MPU9250_CONFIG, MPU9250_DLPF_CFG_MASK, mode); //MPU9250_CONFIG, MPU9250_CFG_DLPF_CFG_BIT, MPU9250_CFG_DLPF_CFG_LENGTH, mode);
}
// GYRO_CONFIG register
/** Get full-scale gyroscope range.
* The FS_SEL parameter allows setting the full-scale range of the gyro sensors,
* as described in the table below.
*
* <pre>
* 0 = +/- 250 degrees/sec
* 1 = +/- 500 degrees/sec
* 2 = +/- 1000 degrees/sec
* 3 = +/- 2000 degrees/sec
* </pre>
*
* @return Current full-scale gyroscope range setting
* @see MPU9250_GYRO_FS_250
* @see MPU9250_GYRO_CONFIG
* @see MPU9250_GYRO_FS_SEL_MASK
*/
uint8_t MPU9250::getFullScaleGyroRange(void) {
return readMaskedRegister(MPU9250_GYRO_CONFIG, MPU9250_GYRO_FS_SEL_MASK);
}
/** Set full-scale gyroscope range.
* @param range New full-scale gyroscope range value
* @see getFullScaleRange()
* @see MPU9250_GYRO_FS_250
* @see MPU9250_CONFIG
* @see MPU9250_GYRO_FS_SEL_MASK
*/
bool MPU9250::setFullScaleGyroRange(const uint8_t range) {
return writeMaskedRegister(MPU9250_GYRO_CONFIG, MPU9250_GYRO_FS_SEL_MASK, range); //MPU9250_GCONFIG_FS_SEL_BIT, MPU9250_GCONFIG_FS_SEL_LENGTH, range);
}
// ACCEL_CONFIG register
/** Get self-test enabled setting for accelerometer X axis.
* @return Self-test enabled value
* @see MPU9250_SELF_TEST_X_ACCEL
*/
bool MPU9250::getAccelXSelfTest(void) {
uint8_t test_result = readRegister(MPU9250_SELF_TEST_X_ACCEL); //MPU9250_ACONFIG_XA_ST_BIT, buffer); //check if ACCEL CONFIG2 is relevant
return (test_result != 0);
}
/** Get self-test enabled setting for accelerometer X axis.
* @param enabled Self-test enabled value
* @see MPU9250_SELF_TEST_X_ACCEL
*/
bool MPU9250::setAccelXSelfTest(const uint8_t enabled) {
return writeRegister(MPU9250_SELF_TEST_X_ACCEL, enabled); //, MPU9250_ACONFIG_XA_ST_BIT, enabled);//check if ACCEL CONFIG2 is relevant
}
/** Get self-test enabled value for accelerometer Y axis.
* @return Self-test enabled value
* @see MPU9250_SELF_TEST_Y_ACCEL
*/
bool MPU9250::getAccelYSelfTest(void) {
uint8_t test_result = readRegister(MPU9250_SELF_TEST_Y_ACCEL); //, MPU9250_ACONFIG_YA_ST_BIT, buffer);//check if ACCEL CONFIG2 is relevant
return (test_result != 0);
}
/** Get self-test enabled value for accelerometer Y axis.
* @param enabled Self-test enabled value
* @see MPU9250_SELF_TEST_Y_ACCEL
*/
bool MPU9250::setAccelYSelfTest(const uint8_t enabled) {
return writeRegister(MPU9250_SELF_TEST_Y_ACCEL, enabled); //, MPU9250_ACONFIG_YA_ST_BIT, enabled);//check if ACCEL CONFIG2 is relevant
}
/** Get self-test enabled value for accelerometer Z axis.
* @return Self-test enabled value
* @see MPU9250_SELF_TEST_Z_ACCEL
*/
bool MPU9250::getAccelZSelfTest(void) {
uint8_t test_result = readRegister(MPU9250_SELF_TEST_Z_ACCEL); //, MPU9250_ACONFIG_ZA_ST_BIT, buffer);//check if ACCEL CONFIG2 is relevant
return (test_result != 0);
}
/** Set self-test enabled value for accelerometer Z axis.
* @param enabled Self-test enabled value
* @see MPU9250_SELF_TEST_Z_ACCEL
*/
bool MPU9250::setAccelZSelfTest(const uint8_t enabled) {
return writeRegister(MPU9250_SELF_TEST_Z_ACCEL, enabled); //MPU9250_RA_ACCEL_CONFIG, MPU9250_ACONFIG_ZA_ST_BIT, enabled);//check if ACCEL CONFIG2 is relevant
}
/** Get full-scale accelerometer range.
* The FS_SEL parameter allows setting the full-scale range of the accelerometer
* sensors, as described in the table below.
*
* <pre>
* 0 = +/- 2g
* 1 = +/- 4g
* 2 = +/- 8g
* 3 = +/- 16g
* </pre>
*
* @return Current full-scale accelerometer range setting
* @see MPU9250_ACCEL_FS_2
* @see MPU9250_ACCEL_CONFIG
* @see MPU9250_ACCEL_FS_SEL_MASK
*/
uint8_t MPU9250::getFullScaleAccelRange(void) {
return readMaskedRegister(MPU9250_ACCEL_CONFIG, MPU9250_ACCEL_FS_SEL_MASK); //MPU9250_ACONFIG_AFS_SEL_BIT, MPU9250_ACONFIG_AFS_SEL_LENGTH, //check if ACCEL CONFIG2 is relevant
}
/** Set full-scale accelerometer range.
* @param range New full-scale accelerometer range setting
* @see getFullScaleAccelRange()
*/
bool MPU9250::setFullScaleAccelRange(const uint8_t range) {
if(range < 3){
return 0;
} else {
return writeMaskedRegister(MPU9250_ACCEL_CONFIG, MPU9250_ACCEL_FS_SEL_MASK, range);
}
}
/** Get the high-pass filter configuration.
* The DHPF is a filter module in the path leading to motion detectors (Free
* Fall, Motion threshold, and Zero Motion). The high pass filter output is not
* available to the data registers (see Figure in Section 8 of the MPU-6000/
* MPU-6050 Product Specification document).
*
* The high pass filter has three modes:
*
* <pre>
* Reset: The filter output settles to zero within one sample. This
* effectively disables the high pass filter. This mode may be toggled
* to quickly settle the filter.
*
* On: The high pass filter will pass signals above the cut off frequency.
*
* Hold: When triggered, the filter holds the present sample. The filter
* output will be the difference between the input sample and the held
* sample.
* </pre>
*
* <pre>
* ACCEL_HPF | Filter Mode | Cut-off Frequency
* ----------+-------------+------------------
* 0 | Reset | None
* 1 | On | 5Hz
* 2 | On | 2.5Hz
* 3 | On | 1.25Hz
* 4 | On | 0.63Hz
* 7 | Hold | None
* </pre>
*
* @return Current high-pass filter configuration
* @see MPU9250_DHPF_RESET
* @see MPU9250_RA_ACCEL_CONFIG
*/
uint8_t MPU9250::getDHPFMode(void) {
return 0;
//return readMaskedRegister(MPU9250_ACCEL_CONFIG, uint8_t mask); //MPU9250_ACONFIG_ACCEL_HPF_BIT, MPU9250_ACONFIG_ACCEL_HPF_LENGTH, buffer);//check if ACCEL CONFIG2 is relevant
}
/** Set the high-pass filter configuration.
* @param bandwidth New high-pass filter configuration
* @see setDHPFMode()
* @see MPU9250_DHPF_RESET
* @see MPU9250_RA_ACCEL_CONFIG
*/
bool MPU9250::setDHPFMode(const uint8_t bandwidth) {
return 0;
//return writeMaskedRegister(MPU9250_ACCEL_CONFIG, uint8_t mask, bandwidth); //MPU9250_ACONFIG_ACCEL_HPF_BIT, MPU9250_ACONFIG_ACCEL_HPF_LENGTH, bandwidth);//check if ACCEL CONFIG2 is relevant
}
// FF_THR register
/** Get free-fall event acceleration threshold.
* This register configures the detection threshold for Free Fall event
* detection. The unit of FF_THR is 1LSB = 2mg. Free Fall is detected when the
* absolute value of the accelerometer measurements for the three axes are each
* less than the detection threshold. This condition increments the Free Fall
* duration counter (Register 30). The Free Fall interrupt is triggered when the
* Free Fall duration counter reaches the time specified in FF_DUR.
*
* For more details on the Free Fall detection interrupt, see Section 8.2 of the
* MPU-6000/MPU-6050 Product Specification document as well as Registers 56 and
* 58 of this document.
*
* @return Current free-fall acceleration threshold value (LSB = 2mg)
* @see MPU9250_RA_FF_THR
*/
uint8_t MPU9250::getFreefallDetectionThreshold(void) {
return 0;
//return readRegister(MPU9250_RA_FF_THR);
}
/** Get free-fall event acceleration threshold.
* @param threshold New free-fall acceleration threshold value (LSB = 2mg)
* @see getFreefallDetectionThreshold()
* @see MPU9250_RA_FF_THR
*/
bool MPU9250::setFreefallDetectionThreshold(const uint8_t threshold) {
return 0;
//return writeRegister(MPU9250_RA_FF_THR, threshold);
}
// FF_DUR register
/** Get free-fall event duration threshold.
* This register configures the duration counter threshold for Free Fall event
* detection. The duration counter ticks at 1kHz, therefore FF_DUR has a unit
* of 1 LSB = 1 ms.
*
* The Free Fall duration counter increments while the absolute value of the
* accelerometer measurements are each less than the detection threshold
* (Register 29). The Free Fall interrupt is triggered when the Free Fall
* duration counter reaches the time specified in this register.
*
* For more details on the Free Fall detection interrupt, see Section 8.2 of
* the MPU-6000/MPU-6050 Product Specification document as well as Registers 56
* and 58 of this document.
*
* @return Current free-fall duration threshold value (LSB = 1ms)
* @see MPU9250_RA_FF_DUR
*/
uint8_t MPU9250::getFreefallDetectionDuration(void) {
return 0;
//return readRegister(MPU9250_RA_FF_DUR);
}
/** Get free-fall event duration threshold.
* @param duration New free-fall duration threshold value (LSB = 1ms)
* @see getFreefallDetectionDuration()
* @see MPU9250_RA_FF_DUR
*/
bool MPU9250::setFreefallDetectionDuration(const uint8_t duration) {
return 0;
//return writeRegister(MPU9250_RA_FF_DUR, duration);
}
// MOT_THR register
/** Get motion detection event acceleration threshold.
* This register configures the detection threshold for Motion interrupt
* generation. The unit of MOT_THR is 1LSB = 2mg. Motion is detected when the
* absolute value of any of the accelerometer measurements exceeds this Motion
* detection threshold. This condition increments the Motion detection duration
* counter (Register 32). The Motion detection interrupt is triggered when the
* Motion Detection counter reaches the time count specified in MOT_DUR
* (Register 32).
*
* The Motion interrupt will indicate the axis and polarity of detected motion
* in MOT_DETECT_STATUS (Register 97).
*
* For more details on the Motion detection interrupt, see Section 8.3 of the
* MPU-6000/MPU-6050 Product Specification document as well as Registers 56 and
* 58 of this document.
*
* @return Current motion detection acceleration threshold value (LSB = 2mg)
* @see MPU9250_RA_MOT_THR
*/
uint8_t MPU9250::getMotionDetectionThreshold(void) {
return 0;
//return readRegister(MPU9250_RA_MOT_THR);
}
/** Set free-fall event acceleration threshold.
* @param threshold New motion detection acceleration threshold value (LSB = 2mg)
* @see getMotionDetectionThreshold()
* @see MPU9250_RA_MOT_THR
*/
bool MPU9250::setMotionDetectionThreshold(const uint8_t threshold) {
return 0;
//return writeRegister(MPU9250_RA_MOT_THR, threshold);
}
// MOT_DUR register
/** Get motion detection event duration threshold.
* This register configures the duration counter threshold for Motion interrupt
* generation. The duration counter ticks at 1 kHz, therefore MOT_DUR has a unit
* of 1LSB = 1ms. The Motion detection duration counter increments when the
* absolute value of any of the accelerometer measurements exceeds the Motion
* detection threshold (Register 31). The Motion detection interrupt is
* triggered when the Motion detection counter reaches the time count specified
* in this register.
*
* For more details on the Motion detection interrupt, see Section 8.3 of the
* MPU-6000/MPU-6050 Product Specification document.
*
* @return Current motion detection duration threshold value (LSB = 1ms)
* @see MPU9250_RA_MOT_DUR
*/
uint8_t MPU9250::getMotionDetectionDuration(void) {
return 0;
//return readRegister(MPU9250_RA_MOT_DUR);
}
/** Set motion detection event duration threshold.
* @param duration New motion detection duration threshold value (LSB = 1ms)
* @see getMotionDetectionDuration()
* @see MPU9250_RA_MOT_DUR
*/
bool MPU9250::setMotionDetectionDuration(const uint8_t duration) {
return 0;
//return writeRegister(MPU9250_RA_MOT_DUR, duration);
}
// ZRMOT_THR register
/** Get zero motion detection event acceleration threshold.
* This register configures the detection threshold for Zero Motion interrupt
* generation. The unit of ZRMOT_THR is 1LSB = 2mg. Zero Motion is detected when
* the absolute value of the accelerometer measurements for the 3 axes are each
* less than the detection threshold. This condition increments the Zero Motion
* duration counter (Register 34). The Zero Motion interrupt is triggered when
* the Zero Motion duration counter reaches the time count specified in
* ZRMOT_DUR (Register 34).
*
* Unlike Free Fall or Motion detection, Zero Motion detection triggers an
* interrupt both when Zero Motion is first detected and when Zero Motion is no
* longer detected.
*
* When a zero motion event is detected, a Zero Motion Status will be indicated
* in the MOT_DETECT_STATUS register (Register 97). When a motion-to-zero-motion
* condition is detected, the status bit is set to 1. When a zero-motion-to-
* motion condition is detected, the status bit is set to 0.
*
* For more details on the Zero Motion detection interrupt, see Section 8.4 of
* the MPU-6000/MPU-6050 Product Specification document as well as Registers 56
* and 58 of this document.
*
* @return Current zero motion detection acceleration threshold value (LSB = 2mg)
* @see MPU9250_RA_ZRMOT_THR
*/
uint8_t MPU9250::getZeroMotionDetectionThreshold(void) {
return 0;
//return readRegister(MPU9250_RA_ZRMOT_THR);
}
/** Set zero motion detection event acceleration threshold.
* @param threshold New zero motion detection acceleration threshold value (LSB = 2mg)
* @see getZeroMotionDetectionThreshold()
* @see MPU9250_RA_ZRMOT_THR
*/
bool MPU9250::setZeroMotionDetectionThreshold(const uint8_t threshold) {
return 0;
//return writeRegister(MPU9250_RA_ZRMOT_THR, threshold);
}
// ZRMOT_DUR register
/** Get zero motion detection event duration threshold.
* This register configures the duration counter threshold for Zero Motion
* interrupt generation. The duration counter ticks at 16 Hz, therefore
* ZRMOT_DUR has a unit of 1 LSB = 64 ms. The Zero Motion duration counter
* increments while the absolute value of the accelerometer measurements are
* each less than the detection threshold (Register 33). The Zero Motion
* interrupt is triggered when the Zero Motion duration counter reaches the time
* count specified in this register.
*
* For more details on the Zero Motion detection interrupt, see Section 8.4 of
* the MPU-6000/MPU-6050 Product Specification document, as well as Registers 56
* and 58 of this document.
*
* @return Current zero motion detection duration threshold value (LSB = 64ms)
* @see MPU9250_RA_ZRMOT_DUR
*/
uint8_t MPU9250::getZeroMotionDetectionDuration(void) {
return 0;
//return readRegister(MPU9250_RA_ZRMOT_DUR);
}
/** Set zero motion detection event duration threshold.
* @param duration New zero motion detection duration threshold value (LSB = 1ms)
* @see getZeroMotionDetectionDuration()
* @see MPU9250_RA_ZRMOT_DUR
*/
bool MPU9250::setZeroMotionDetectionDuration(const uint8_t duration) {
return 0;
//return writeRegister(MPU9250_RA_ZRMOT_DUR, duration);
}
// FIFO_EN register
/** Get temperature FIFO enabled value.
* When set to 1, this bit enables TEMP_OUT_H and TEMP_OUT_L (Registers 65 and
* 66) to be written into the FIFO buffer.
* @return Current temperature FIFO enabled value
* @see MPU9250_RA_FIFO_EN
*/
bool MPU9250::getTempFIFOEnabled(void) {
uint8_t response = readMaskedRegister(MPU9250_FIFO_EN, MPU9250_TEMP_FIFO_EN_MASK);
return (response != 0);
}
/** Set temperature FIFO enabled value.
* @param enabled New temperature FIFO enabled value
* @see getTempFIFOEnabled()
* @see MPU9250_RA_FIFO_EN
*/
bool MPU9250::setTempFIFOEnabled(const bool enabled) {
return writeMaskedRegister(MPU9250_FIFO_EN, MPU9250_TEMP_FIFO_EN_MASK, enabled);
}
/** Get gyroscope X-axis FIFO enabled value.
* When set to 1, this bit enables GYRO_XOUT_H and GYRO_XOUT_L (Registers 67 and
* 68) to be written into the FIFO buffer.
* @return Current gyroscope X-axis FIFO enabled value
* @see MPU9250_RA_FIFO_EN
*/
bool MPU9250::getXGyroFIFOEnabled(void) {
uint8_t response = readMaskedRegister(MPU9250_FIFO_EN, MPU9250_GYRO_XOUT_MASK);
return (response != 0);
}
/** Set gyroscope X-axis FIFO enabled value.
* @param enabled New gyroscope X-axis FIFO enabled value
* @see getXGyroFIFOEnabled()
* @see MPU9250_RA_FIFO_EN
*/
bool MPU9250::setXGyroFIFOEnabled(const bool enabled) {
return writeMaskedRegister(MPU9250_FIFO_EN, MPU9250_GYRO_XOUT_MASK, enabled);
}
/** Get gyroscope Y-axis FIFO enabled value.
* When set to 1, this bit enables GYRO_YOUT_H and GYRO_YOUT_L (Registers 69 and
* 70) to be written into the FIFO buffer.
* @return Current gyroscope Y-axis FIFO enabled value
* @see MPU9250_RA_FIFO_EN
*/
bool MPU9250::getYGyroFIFOEnabled(void) {
uint8_t response = readMaskedRegister(MPU9250_FIFO_EN, MPU9250_GYRO_YOUT_MASK);
return (response != 0);
}
/** Set gyroscope Y-axis FIFO enabled value.
* @param enabled New gyroscope Y-axis FIFO enabled value
* @see getYGyroFIFOEnabled()
* @see MPU9250_RA_FIFO_EN
*/
bool MPU9250::setYGyroFIFOEnabled(const bool enabled) {
return writeMaskedRegister(MPU9250_FIFO_EN, MPU9250_GYRO_YOUT_MASK, enabled);
}
/** Get gyroscope Z-axis FIFO enabled value.
* When set to 1, this bit enables GYRO_ZOUT_H and GYRO_ZOUT_L (Registers 71 and
* 72) to be written into the FIFO buffer.
* @return Current gyroscope Z-axis FIFO enabled value
* @see MPU9250_RA_FIFO_EN
*/
bool MPU9250::getZGyroFIFOEnabled(void) {
uint8_t response = readMaskedRegister(MPU9250_FIFO_EN, MPU9250_GYRO_ZOUT_MASK);
return (response != 0);
}
/** Set gyroscope Z-axis FIFO enabled value.
* @param enabled New gyroscope Z-axis FIFO enabled value
* @see getZGyroFIFOEnabled()
* @see MPU9250_RA_FIFO_EN
*/
bool MPU9250::setZGyroFIFOEnabled(const bool enabled) {
return writeMaskedRegister(MPU9250_FIFO_EN, MPU9250_GYRO_ZOUT_MASK, enabled);
}
/** Get accelerometer FIFO enabled value.
* When set to 1, this bit enables ACCEL_XOUT_H, ACCEL_XOUT_L, ACCEL_YOUT_H,
* ACCEL_YOUT_L, ACCEL_ZOUT_H, and ACCEL_ZOUT_L (Registers 59 to 64) to be
* written into the FIFO buffer.
* @return Current accelerometer FIFO enabled value
* @see MPU9250_RA_FIFO_EN
*/
bool MPU9250::getAccelFIFOEnabled(void) {
uint8_t response = readMaskedRegister(MPU9250_FIFO_EN, MPU9250_ACCEL_MASK);
return (response != 0);
}
/** Set accelerometer FIFO enabled value.
* @param enabled New accelerometer FIFO enabled value
* @see getAccelFIFOEnabled()
* @see MPU9250_RA_FIFO_EN
*/
bool MPU9250::setAccelFIFOEnabled(const bool enabled) {
return writeMaskedRegister(MPU9250_FIFO_EN, MPU9250_ACCEL_MASK, enabled);
}
/** Get Slave 2 FIFO enabled value.
* When set to 1, this bit enables EXT_SENS_DATA registers (Registers 73 to 96)
* associated with Slave 2 to be written into the FIFO buffer.
* @return Current Slave 2 FIFO enabled value
* @see MPU9250_RA_FIFO_EN
*/
bool MPU9250::getSlave2FIFOEnabled(void) {
uint8_t response = readMaskedRegister(MPU9250_FIFO_EN, MPU9250_SLV2_MASK);
return (response != 0);
}
/** Set Slave 2 FIFO enabled value.
* @param enabled New Slave 2 FIFO enabled value
* @see getSlave2FIFOEnabled()
* @see MPU9250_RA_FIFO_EN
*/
bool MPU9250::setSlave2FIFOEnabled(const bool enabled) {
return writeMaskedRegister(MPU9250_FIFO_EN, MPU9250_SLV2_MASK, enabled);
}
/** Get Slave 1 FIFO enabled value.
* When set to 1, this bit enables EXT_SENS_DATA registers (Registers 73 to 96)
* associated with Slave 1 to be written into the FIFO buffer.
* @return Current Slave 1 FIFO enabled value
* @see MPU9250_RA_FIFO_EN
*/
bool MPU9250::getSlave1FIFOEnabled(void) {
uint8_t response = readMaskedRegister(MPU9250_FIFO_EN, MPU9250_SLV1_MASK);
return (response != 0);
}
/** Set Slave 1 FIFO enabled value.
* @param enabled New Slave 1 FIFO enabled value
* @see getSlave1FIFOEnabled()
* @see MPU9250_RA_FIFO_EN
*/
bool MPU9250::setSlave1FIFOEnabled(const bool enabled) {
return writeMaskedRegister(MPU9250_FIFO_EN, MPU9250_SLV1_MASK, enabled);
}
/** Get Slave 0 FIFO enabled value.
* When set to 1, this bit enables EXT_SENS_DATA registers (Registers 73 to 96)
* associated with Slave 0 to be written into the FIFO buffer.
* @return Current Slave 0 FIFO enabled value
* @see MPU9250_RA_FIFO_EN
*/
bool MPU9250::getSlave0FIFOEnabled(void) {
uint8_t response = readMaskedRegister(MPU9250_FIFO_EN, MPU9250_SLV0_MASK);
return (response != 0);
}
/** Set Slave 0 FIFO enabled value.
* @param enabled New Slave 0 FIFO enabled value
* @see getSlave0FIFOEnabled()
* @see MPU9250_RA_FIFO_EN
*/
bool MPU9250::setSlave0FIFOEnabled(const bool enabled) {
return writeMaskedRegister(MPU9250_FIFO_EN, MPU9250_SLV0_MASK, enabled);
}
// I2C_MST_CTRL register
/** Get multi-master enabled value.
* Multi-master capability allows multiple I2C masters to operate on the same
* bus. In circuits where multi-master capability is required, set MULT_MST_EN
* to 1. This will increase current drawn by approximately 30uA.
*
* In circuits where multi-master capability is required, the state of the I2C
* bus must always be monitored by each separate I2C Master. Before an I2C
* Master can assume arbitration of the bus, it must first confirm that no other
* I2C Master has arbitration of the bus. When MULT_MST_EN is set to 1, the
* MPU-60X0's bus arbitration detection logic is turned on, enabling it to
* detect when the bus is available.
*
* @return Current multi-master enabled value
* @see MPU9250_RA_I2C_MST_CTRL
*/
bool MPU9250::getMultiMasterEnabled(void) {
uint8_t response = readMaskedRegister(MPU9250_I2C_MST_CTRL, MPU9250_MULT_MST_EN_MASK);
return (response != 0);
}
/** Set multi-master enabled value.
* @param enabled New multi-master enabled value
* @see getMultiMasterEnabled()
* @see MPU9250_RA_I2C_MST_CTRL
*/
bool MPU9250::setMultiMasterEnabled(const bool enabled) {
return writeMaskedRegister(MPU9250_I2C_MST_CTRL, MPU9250_MULT_MST_EN_MASK, enabled);
}
/** Get wait-for-external-sensor-data enabled value.
* When the WAIT_FOR_ES bit is set to 1, the Data Ready interrupt will be
* delayed until External Sensor data from the Slave Devices are loaded into the
* EXT_SENS_DATA registers. This is used to ensure that both the internal sensor
* data (i.e. from gyro and accel) and external sensor data have been loaded to
* their respective data registers (i.e. the data is synced) when the Data Ready
* interrupt is triggered.
*
* @return Current wait-for-external-sensor-data enabled value
* @see MPU9250_RA_I2C_MST_CTRL
*/
bool MPU9250::getWaitForExternalSensorEnabled(void) {
uint8_t response = readMaskedRegister(MPU9250_I2C_MST_CTRL, MPU9250_WAIT_FOR_ES_MASK);
return (response != 0);
}
/** Set wait-for-external-sensor-data enabled value.
* @param enabled New wait-for-external-sensor-data enabled value
* @see getWaitForExternalSensorEnabled()
* @see MPU9250_RA_I2C_MST_CTRL
*/
bool MPU9250::setWaitForExternalSensorEnabled(const bool enabled) {
return writeMaskedRegister(MPU9250_I2C_MST_CTRL, MPU9250_WAIT_FOR_ES_MASK, enabled);
}
/** Get Slave 3 FIFO enabled value.
* When set to 1, this bit enables EXT_SENS_DATA registers (Registers 73 to 96)
* associated with Slave 3 to be written into the FIFO buffer.
* @return Current Slave 3 FIFO enabled value
* @see MPU9250_RA_MST_CTRL
*/
bool MPU9250::getSlave3FIFOEnabled(void) {
uint8_t response = readMaskedRegister(MPU9250_I2C_MST_CTRL, MPU9250_SLV_3_FIFO_EN_MASK);
return (response != 0);
}
/** Set Slave 3 FIFO enabled value.
* @param enabled New Slave 3 FIFO enabled value
* @see getSlave3FIFOEnabled()
* @see MPU9250_RA_MST_CTRL
*/
bool MPU9250::setSlave3FIFOEnabled(const bool enabled) {
return writeMaskedRegister(MPU9250_I2C_MST_CTRL, MPU9250_SLV_3_FIFO_EN_MASK, enabled);
}
/** Get slave read/write transition enabled value.
* The I2C_MST_P_NSR bit configures the I2C Master's transition from one slave
* read to the next slave read. If the bit equals 0, there will be a restart
* between reads. If the bit equals 1, there will be a stop followed by a start
* of the following read. When a write transaction follows a read transaction,
* the stop followed by a start of the successive write will be always used.
*
* @return Current slave read/write transition enabled value
* @see MPU9250_RA_I2C_MST_CTRL
*/
bool MPU9250::getSlaveReadWriteTransitionEnabled(void) {
uint8_t response = readMaskedRegister(MPU9250_I2C_MST_CTRL, MPU9250_I2C_MST_P_NSR_MASK);
return (response != 0);
}
/** Set slave read/write transition enabled value.
* @param enabled New slave read/write transition enabled value
* @see getSlaveReadWriteTransitionEnabled()
* @see MPU9250_RA_I2C_MST_CTRL
*/
bool MPU9250::setSlaveReadWriteTransitionEnabled(const bool enabled) {
return writeMaskedRegister(MPU9250_I2C_MST_CTRL, MPU9250_I2C_MST_P_NSR_MASK, enabled);
}
/** Get I2C master clock speed.
* I2C_MST_CLK is a 4 bit unsigned value which configures a divider on the
* MPU-60X0 internal 8MHz clock. It sets the I2C master clock speed according to
* the following table:
*
* <pre>
* I2C_MST_CLK | I2C Master Clock Speed | 8MHz Clock Divider
* ------------+------------------------+-------------------
* 0 | 348kHz | 23
* 1 | 333kHz | 24
* 2 | 320kHz | 25
* 3 | 308kHz | 26
* 4 | 296kHz | 27
* 5 | 286kHz | 28
* 6 | 276kHz | 29
* 7 | 267kHz | 30
* 8 | 258kHz | 31
* 9 | 500kHz | 16
* 10 | 471kHz | 17
* 11 | 444kHz | 18
* 12 | 421kHz | 19
* 13 | 400kHz | 20
* 14 | 381kHz | 21
* 15 | 364kHz | 22
* </pre>
*
* @return Current I2C master clock speed
* @see MPU9250_RA_I2C_MST_CTRL
*/
uint8_t MPU9250::getMasterClockSpeed(void) {
return readMaskedRegister(MPU9250_I2C_MST_CTRL, MPU9250_I2C_MST_CLK_MASK);
}
/** Set I2C master clock speed.
* @reparam speed Current I2C master clock speed
* @see MPU9250_RA_I2C_MST_CTRL
*/
bool MPU9250::setMasterClockSpeed(const uint8_t speed) {
if(speed > 15) {
return 0;
}
return writeMaskedRegister(MPU9250_I2C_MST_CTRL, MPU9250_I2C_MST_CLK_MASK, speed);
}
// I2C_SLV* registers (Slave 0-3)
/** Get the I2C address of the specified slave (0-3).
* Note that Bit 7 (MSB) controls read/write mode. If Bit 7 is set, it's a read
* operation, and if it is cleared, then it's a write operation. The remaining
* bits (6-0) are the 7-bit device address of the slave device.
*
* In read mode, the result of the read is placed in the lowest available
* EXT_SENS_DATA register. For further information regarding the allocation of
* read results, please refer to the EXT_SENS_DATA register description
* (Registers 73 - 96).
*
* The MPU-6050 supports a total of five slaves, but Slave 4 has unique
* characteristics, and so it has its own functions (getSlave4* and setSlave4*).
*
* I2C data transactions are performed at the Sample Rate, as defined in
* Register 25. The user is responsible for ensuring that I2C data transactions
* to and from each enabled Slave can be completed within a single period of the
* Sample Rate.
*
* The I2C slave access rate can be reduced relative to the Sample Rate. This
* reduced access rate is determined by I2C_MST_DLY (Register 52). Whether a
* slave's access rate is reduced relative to the Sample Rate is determined by
* I2C_MST_DELAY_CTRL (Register 103).
*
* The processing order for the slaves is fixed. The sequence followed for
* processing the slaves is Slave 0, Slave 1, Slave 2, Slave 3 and Slave 4. If a
* particular Slave is disabled it will be skipped.
*
* Each slave can either be accessed at the sample rate or at a reduced sample
* rate. In a case where some slaves are accessed at the Sample Rate and some
* slaves are accessed at the reduced rate, the sequence of accessing the slaves
* (Slave 0 to Slave 4) is still followed. However, the reduced rate slaves will
* be skipped if their access rate dictates that they should not be accessed
* during that particular cycle. For further information regarding the reduced
* access rate, please refer to Register 52. Whether a slave is accessed at the
* Sample Rate or at the reduced rate is determined by the Delay Enable bits in