-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtest.R
53 lines (42 loc) · 1.48 KB
/
test.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
library(tidyverse)
library(data.table)
all_cases <- rbindlist(lapply(fs::dir_ls(path = here::here("data", "oa-incidence")),
fread))
all_cases <- all_cases[order(EpidateDT)][,cum_confirm := cumsum(CaseCNT), by = "EpidateDT"]
z<-all_cases %>%
rename(reference_date = EpidateDT, report_date = ReportDT, confirm = CaseCNT) %>%
group_by(reference_date) |>
mutate(cum_confirm = cummax(confirm)) |>
ungroup() |>
mutate(confirm = ifelse(!is.na(reference_date), cum_confirm, confirm)) |>
dplyr::select(-cum_confirm)
library(epinowcast)
max_delay <- 4
complete_df <- z |>
enw_complete_dates(max_delay = max_delay)
enw_df <- complete_df |>
enw_preprocess_data(max_delay = max_delay)
model <- enw_model(threads = TRUE)
fit_opts <- enw_fit_opts(
chains = 2, parallel_chains = 2, threads_per_chain = 2,
iter_sampling = 1000, iter_warmup = 1000, adapt_delta = 0.9,
show_messages = TRUE, refresh = 50, pp = TRUE
)
model <- enw_model(threads = TRUE)
simple_nowcast <- epinowcast(
obs = enw_obs(family = "poisson", data = enw_df),
data = enw_df, model = model, fit = fit_opts,
)
simple_nowcast
simple_nowcast |>
summary(probs = c(0.05, 0.95)) |>
dplyr::select(
reference_date, report_date, delay, confirm, mean, median, sd, mad
) |>
tail(n = 14)
simple_nowcast |>
plot() +
labs(x = "Onset date", y = "Reported cases by onset date")
simple_nowcast |>
summary(type = "fit", variables = c("refp_mean", "refp_sd")) |>
dplyr::select(variable, mean, median, sd, mad)