-
Notifications
You must be signed in to change notification settings - Fork 1
/
linear.py
166 lines (139 loc) · 7.76 KB
/
linear.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import argparse
import pandas as pd
import torch
import torch.nn as nn
import torch.optim as optim
from thop import profile, clever_format
from torch.utils.data import DataLoader
from torchvision.datasets import CIFAR10, CIFAR100
from tqdm import tqdm
import utils
import wandb
import torchvision
class Net(nn.Module):
def __init__(self, num_class, pretrained_path, dataset, arch):
super(Net, self).__init__()
if arch=='resnet18':
embedding_size = 512
elif arch=='resnet50':
embedding_size = 2048
else:
raise NotImplementedError
# encoder
from model import Model
self.f = Model(dataset=dataset, arch=arch).f
# classifier
self.fc = nn.Linear(embedding_size, num_class, bias=True)
self.load_state_dict(torch.load(pretrained_path, map_location='cpu'), strict=False)
def forward(self, x):
x = self.f(x)
feature = torch.flatten(x, start_dim=1)
out = self.fc(feature)
return out
# train or test for one epoch
def train_val(net, data_loader, train_optimizer):
is_train = train_optimizer is not None
net.train() if is_train else net.eval()
total_loss, total_correct_1, total_correct_5, total_num, data_bar = 0.0, 0.0, 0.0, 0, tqdm(data_loader)
with (torch.enable_grad() if is_train else torch.no_grad()):
for data, target in data_bar:
data, target = data.cuda(non_blocking=True), target.cuda(non_blocking=True)
out = net(data)
loss = loss_criterion(out, target)
if is_train:
train_optimizer.zero_grad()
loss.backward()
train_optimizer.step()
total_num += data.size(0)
total_loss += loss.item() * data.size(0)
prediction = torch.argsort(out, dim=-1, descending=True)
total_correct_1 += torch.sum((prediction[:, 0:1] == target.unsqueeze(dim=-1)).any(dim=-1).float()).item()
total_correct_5 += torch.sum((prediction[:, 0:5] == target.unsqueeze(dim=-1)).any(dim=-1).float()).item()
data_bar.set_description('{} Epoch: [{}/{}] Loss: {:.4f} ACC@1: {:.2f}% ACC@5: {:.2f}% model: {}'
.format('Train' if is_train else 'Test', epoch, epochs, total_loss / total_num,
total_correct_1 / total_num * 100, total_correct_5 / total_num * 100,
model_path.split('/')[-1]))
return total_loss / total_num, total_correct_1 / total_num * 100, total_correct_5 / total_num * 100
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Linear Evaluation')
parser.add_argument('--dataset', default='cifar10', type=str, help='Dataset: cifar10 or tiny_imagenet or stl10')
parser.add_argument('--arch', default='resnet50', type=str, help='Backbone architecture for experiments', choices=['resnet50', 'resnet18'])
parser.add_argument('--model_path', type=str, default='results/Barlow_Twins/0.005_64_128_model.pth',
help='The base string of the pretrained model path')
parser.add_argument('--batch_size', type=int, default=512, help='Number of images in each mini-batch')
parser.add_argument('--epochs', type=int, default=200, help='Number of sweeps over the dataset to train')
args = parser.parse_args()
wandb.init(project=f"Barlow-Twins-MixUp-Linear-{args.dataset}-{args.arch}", config=args, dir='/data/wbandar1/projects/ssl-aug-artifacts/wandb_logs/')
run_id = wandb.run.id
model_path, batch_size, epochs = args.model_path, args.batch_size, args.epochs
dataset = args.dataset
if dataset == 'cifar10':
train_data = CIFAR10(root='data', train=True,\
transform=utils.CifarPairTransform(train_transform = True, pair_transform=False), download=True)
test_data = CIFAR10(root='data', train=False,\
transform=utils.CifarPairTransform(train_transform = False, pair_transform=False), download=True)
if dataset == 'cifar100':
train_data = CIFAR100(root='data', train=True,\
transform=utils.CifarPairTransform(train_transform = True, pair_transform=False), download=True)
test_data = CIFAR100(root='data', train=False,\
transform=utils.CifarPairTransform(train_transform = False, pair_transform=False), download=True)
elif dataset == 'stl10':
train_data = torchvision.datasets.STL10(root='data', split="train", \
transform=utils.StlPairTransform(train_transform = True, pair_transform=False), download=True)
test_data = torchvision.datasets.STL10(root='data', split="test", \
transform=utils.StlPairTransform(train_transform = False, pair_transform=False), download=True)
elif dataset == 'tiny_imagenet':
train_data = torchvision.datasets.ImageFolder('/data/wbandar1/datasets/tiny-imagenet-200/train', \
utils.TinyImageNetPairTransform(train_transform=True, pair_transform=False))
test_data = torchvision.datasets.ImageFolder('/data/wbandar1/datasets/tiny-imagenet-200/val', \
utils.TinyImageNetPairTransform(train_transform = False, pair_transform=False))
train_loader = DataLoader(train_data, batch_size=batch_size, shuffle=True, num_workers=16, pin_memory=True)
test_loader = DataLoader(test_data, batch_size=batch_size, shuffle=False, num_workers=16, pin_memory=True)
model = Net(num_class=len(train_data.classes), pretrained_path=model_path, dataset=dataset, arch=args.arch).cuda()
for param in model.f.parameters():
param.requires_grad = False
if dataset == 'cifar10' or dataset == 'cifar100':
flops, params = profile(model, inputs=(torch.randn(1, 3, 32, 32).cuda(),))
elif dataset == 'tiny_imagenet' or dataset == 'stl10':
flops, params = profile(model, inputs=(torch.randn(1, 3, 64, 64).cuda(),))
flops, params = clever_format([flops, params])
print('# Model Params: {} FLOPs: {}'.format(params, flops))
# optimizer with lr sheduler
lr_start, lr_end = 1e-2, 1e-6
gamma = (lr_end / lr_start) ** (1 / epochs)
optimizer = optim.Adam(model.fc.parameters(), lr=lr_start, weight_decay=5e-6)
scheduler = optim.lr_scheduler.ExponentialLR(optimizer, gamma=gamma)
# optimizer with no sheuduler
# optimizer = optim.Adam(model.fc.parameters(), lr=1e-3, weight_decay=1e-6)
loss_criterion = nn.CrossEntropyLoss()
results = {'train_loss': [], 'train_acc@1': [], 'train_acc@5': [],
'test_loss': [], 'test_acc@1': [], 'test_acc@5': []}
save_name = model_path.split('.pth')[0] + '_linear.csv'
best_acc = 0.0
for epoch in range(1, epochs + 1):
train_loss, train_acc_1, train_acc_5 = train_val(model, train_loader, optimizer)
scheduler.step()
results['train_loss'].append(train_loss)
results['train_acc@1'].append(train_acc_1)
results['train_acc@5'].append(train_acc_5)
test_loss, test_acc_1, test_acc_5 = train_val(model, test_loader, None)
results['test_loss'].append(test_loss)
results['test_acc@1'].append(test_acc_1)
results['test_acc@5'].append(test_acc_5)
# save statistics
# data_frame = pd.DataFrame(data=results, index=range(1, epoch + 1))
# data_frame.to_csv(save_name, index_label='epoch')
#if test_acc_1 > best_acc:
# best_acc = test_acc_1
# torch.save(model.state_dict(), 'results/linear_model.pth')
wandb.log(
{
"train_loss": train_loss,
"train_acc@1": train_acc_1,
"train_acc@5": train_acc_5,
"test_loss": test_loss,
"test_acc@1": test_acc_1,
"test_acc@5": test_acc_5
}
)
wandb.finish()